

Energy Technology Perspectives

Dolf Gielen Senior Analyst Energy Technology and R&D Office

UNFCCC Dialogue Workshop Bonn, 16-17 May 2007

©OECD/IEA, 2007

INTERNATIONAL ENERGY AGENCY

G8 - Gleneagles Communiqué July 2005

"We will act with resolve and urgency to meet our shared multiple objectives of reducing greenhouse gas emissions, improving the global environment, enhancing energy security and cutting air pollution in conjunction with our vigorous efforts to reduce poverty"

"The IEA will advise on alternative energy scenarios and strategies aimed at a clean, clever and competitive energy future"

INTERNATIONAL ENERGY AGENCY

IEA

Scenarios & Strategies to 2050

- The ETP scenarios show new pathways to a more sustainable future (< 550 ppm CO₂ eq)
- Emissions can be returned to today's level by 2050, if proper energy policies are implemented
- Technology plays a key role
- Model-based analysis for the world, split into 15 regions
- Cost-based decision making
- Efforts are balanced across sectors and world regions

Scenario Analysis

- Scenarios analysed:
 - Baseline Scenario
 - Accelerated Technology Scenarios (ACT)
 - TECH Plus scenario
- ACT and TECH Plus scenarios:
 - Analyse the impact from R&D, Demonstration and Deployment measures
 - Incentives equivalent to 25 \$/tonne CO₂ for lowcarbon technologies implemented world-wide from 2030 and on
 - Individual scenarios differ in terms of assumptions for key technology areas
 - Constant economic growth/service demand

Technology Assumptions

Scenario	Renewables	Nuclear	CCS	H ₂ fuel cells	biofuels	End-use efficiency
АСТ Мар		Relatively optimis	tic across all te	chnology areas		2.0 % p.a. global improvement
ACT Low Renewables	Slower cost reductions					
ACT Low Nuclear		Lower public acceptance				
ACT No CCS			No CCS			
ACT Low Efficiency						1.7 % p.a. global improvement
TECH Plus	Stronger cost reductions	Stronger cost reductions & technology improvements		Break- through for FC	Stronger cost reductions & improved feedstock availability	

Map: OECD Emissions 32% below 2003 level, while
emissions in Developing Countries are 65% higherINTERNATIONAL ENERGY AGENCYAGENCE INTERNATIONALE DE L'ENERGIE

Materials Production Energy Needs

Energy Efficiency - A top Priority

- Improved energy efficiency saves about 15 000 Mt CO₂ by 2050 - equivalent to 60% of current emissions
- Improved efficiency halves expected growth in electricity demand and reduces the need for generation capacity by a third
- In a scenario with less progress in efficiency, CO₂ emissions increase more than 20%
- Lower efficiency progress increases supplyside investments and costs of reducing CO₂ emissions

Energy Efficiency of Cement Clinker production

INTERNATIONAL ENERGY AGENCY

Global Electricity Generation by Fuel

ACT Scenarios: Important role for CCS and strong growth in the shares for renewables and nuclear

INTERNATIONAL ENERGY AGENCY

Electricity Generation

- CCS is crucial for the role coal can play in a CO₂ constrained world – without CCS coal-fired generation in 2050 drops below today's level
- By 2050 more than 5 000 TWh electricity globally can be produced by coal-plants equipped with CCS
- There is an urgent need for more R&D and for fullscale CCS demonstration plants
- Generation from renewables can quadruple by 2050
- Nuclear can gain a much more important role in countries where it is acceptable

Transportation Sector

- Total transport fuel demand in Baseline scenario grows 140% (2050)
- LDV vehicle travel grows 140%
- Average Baseline LDV stock efficiency gain 18% (annual gain half that of the past 25 years)
- Average LDV stock efficiency gain Act Map +40%, TechPlus +50%

Transport Sector Fuel Demand

INTERNATIONAL ENERGY AGENCY

Key Findings

- Current policies will not bring us on a path towards a sustainable energy future
- A more sustainable energy future is possible with a portfolio of clean and efficient technologies
- Using technologies that have an additional cost of less than 25 \$/tonne CO₂ avoided:
 - Global CO₂ emissions can be returned to today's level by 2050
 - Expected growth in both oil and electricity demand can be halved
- Requires urgent action to promote, develop and deploy a full mix of energy technologies
- Collaboration between developing and developed nations will be essential

INTERNATIONAL ENERGY AGENCY

RDD&D and Investment Actions

- Provide credible long-term CO₂ price indications
- Increase RD&D funds substantially
- Deployment funding needs exceed RD&D funding
- Start with more stringent efficiency standards and regulations
- Limit investments in coal w/o CCS possibility

Technology Access for Developing Countries

- Most key technologies are available today, but too expensive
- Capital availability/scale issue
- Solve IP issues
- Develop a level playing field
- CDM can only be a transitional solution
- Leapfrogging ?

Thank You dolf.gielen@iea.org

INTERNATIONAL ENERGY AGENCY