

"Climate Change Mitigation and Sustainable Development: Lessons for Latin America and the Caribbean"

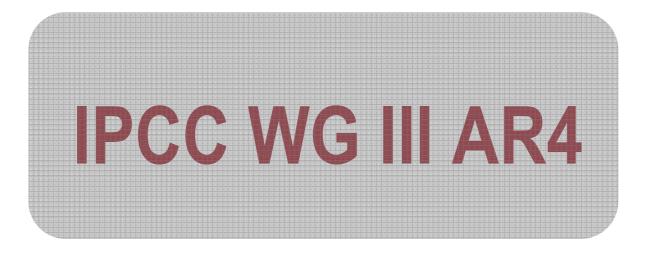
Dr. Ramón Pichs-Madruga WG III Co-Chair

Media training Workshop UNFCCC – CoP 16, Cancun, Mexico

30 December 2010

Lessons from the IPCC work ...

- Providing policy-relevant, but not policyprescriptive, scientific results
- Scientific excellence
- Integrating economic, social (including equity) and environmental aspects
- Mobilising the world scientific community
- Assessing regional, sub-regional and local literature
- Improving the participation of experts from developing countries in the work of the IPCC
- Scientific integration (Cross-Cutting Themes)
- Human dimension



Presentation Structure

- Main findings of the IPCC Fourth Assessment Report (AR4) – WG III
- Expected results of the IPCC *Fifth* Assessment Report (AR5) - WG III
- Climate Change response strategies and sustainable development in the LAC context

Key Findings of IPCC WG III AR4

- GHG Emission Trends
- Climate Change Mitigation in the Short and Medium Term
- Climate Change Mitigation in the Long Term
- Policies, Measures and Instruments for Climate Change Mitigation
- Sustainable Development and Climate Change Mitigation

Trends of GHG Emissions

- Global anthropogenic GHG emissions have grown since pre-industrial times, with an increase of 70% between 1970 and 2004, and carbon dioxide (CO₂) as the largest contributor
- CO₂ emissions grew between 1970 and 2004 by about 80% and represented 77% of total anthropogenic GHG emissions in 2004
- CO₂ emissions between 2000 and 2030 from energy use are projected to grow by 40% to 110%

Climate Change Mitigation in the Short and Medium Term

- Substantial economic potential for the mitigation of global GHG emissions, including opportunities with net negative costs
- No single sector or technology can address the entire mitigation challenge; and all sectors and regions have the potential to contribute
- Mitigation options, including energy efficiency & renewable energy
- Co-benefits (e.g. health, energy security, among others) would further enhance cost savings
- A multi-gas approach and the inclusion of carbon sinks generally reduces costs substantially compared to CO₂ emission abatement only

Climate Change Mitigation in the Long Term

- To stabilize the concentration of GHG in the atmosphere, emissions would need to peak and decline thereafter
- The lower the stabilization level, the more quickly this peak and decline would need to occur
- Global emissions should peak no later than 2015, if temperature increase is to be limited to 2.0 - 2.4°C. That is only five years from now!

8

Policies, Measures and Instruments for Climate Change Mitigation


- Multitude of policy instruments that are available to governments
- The effectiveness of policies depends on national circumstances, their design, interaction, stringency and implementation
- Advantages and disadvantages for any given instrument
- Barriers to mitigation options vary by country and sector, and can be related to financial, technological, institutional, informational and behavioural aspects
- Many options for international cooperation

Response Strategies and Sustainable Development

- Opportunities for integrating economic, social (including equity) and environmental aspects
- Potential for realising synergies and avoiding conflicts with other dimensions of sustainable development
- Making development more sustainable can enhance both mitigative and adaptive capacity, and reduce emissions and vulnerability to climate change
- Adaptation, mitigation and sustainable development as a cross-cutting theme (CCT) for AR5

Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) - Outline

- 1. Renewable Energy and Climate Change
- 2. Bioenergy
- 3. Direct Solar Energy
- 4. Geothermal Energy
- 5. Hydropower
- 6. Ocean Energy
- 7. Wind Energy
- 8. Integration of Renewable Energy into Present and Future Energy Systems
- 9. Renewable Energy in the Context of Sustainable Development
- 10. Mitigation Potential and Costs
- •11. Policy, Financing and Implementation

IPCC WG III AR5: Assessment Challenges

- More emphasis on the socioeconomic dimension of climate change mitigation
- Adaptation, mitigation and sustainable development (Cross-Cutting Theme for AR5)
- Exploring the costs, benefits and risks of different mitigation options (including renewable energy)
- Assessing a range of scenarios and their technical and institutional requirements
- More realistic policy cases through consideration of fragmented markets and technology failures (e.g. constraints for renewable energy technologies)

IPCC AR5 WG III Outline

I: Introduction	1. Introductory Chapter
II: Framing Issues	 Integrated Risk and Uncertainty Assessment of Climate Change Response Policies Social, Economic and Ethical Concepts and Methods Sustainable Development and Equity
III: Pathways for Mitigating Climate Change	 Drivers, Trends and Mitigation Assessing Transformation Pathways Energy Systems Transport Buildings Industry Agriculture, Forestry and Other Land Use (AFOLU) Human Settlements, Infrastructure and Spatial Planning
IV: Assessment of Policies, Institutions and Finance	 13. International Cooperation: Agreements and Instruments 14. Regional Development and Cooperation 15. National and Sub-national Policies and Institutions 16. Cross-cutting Investment and Finance Issues

16. Cross-cutting Investment and Finance Issues

Assessing Scenarios. Lessons for AR5

- Scenarios as key components for consistency among IPCC Working Groups.
- Catalyzing role of the IPCC
- Integrated Assessment Models (IAMs) allow for modelling different mitigation options
- Technology experts contribute to more realistic representation of mitigation options in models, with a long-term perspective
- Key role of scenario assessment in Chapter 6
 of IPCC WG III AR5

Key Messages in the LAC Context ...

- Adaptation, mitigation and sustainable development
- Heterogeneous context
- Urbanization (79% of regional population)
- Land Use Change
- Energy technologies
- Opportunities, barriers & costs
- Options for cooperation

Composition of GHG Emissions in LAC

Sources of emissions	LAC %	World Total %
Energy Sector - CO ₂	26	59
Land Use Change – CO ₂	46	18
Agriculture / Wastes – non CO ₂ GHGs	28	23
Total	100	

Source: De la Torre, Fajnzylber & Nash (2009). RENMENTAL PANEL ON Climate change

Energy Consumption by Sources in 2009 (%)

Sources	LAC	World
Oil	47	35
Natural Gas	25	24
Coal	4	29
Nuclear energy	1	6
Hydro-electricity	23	6
Total	100	100

Source: BP Statistical Review of World Energy, June 2010.

INTERGOVERNMENTAL PANEL ON Climate change

18

Multi-GHG Approach in LAC

- Energy related CO₂ emissions: LAC has relatively low levels of emissions per GDP unit and per capita, in comparison to other regions
- Total GHG emissions: LAC accounts for 12% of world GHG emissions, above the world average in per capita terms & per GDP unit.

See: De la Torre, Fajnzylber & Nash (2009).

19

Opportunities & Challenges in LAC Electricity Sector

- There is a new tendency for carbon intensity of electricity in LAC to increase, due to the growing use of natural gas and coal.
- Investments in energy efficiency, cleaner transportation and renewable energy are identified as key areas for CC mitigation in urban LAC.

CC Mitigation Technologies in the LAC heterogeneous context

Great differences among LAC countries regarding:

 ✓ % of emission from land use change (LUC) and energy sector
 ✓ Per capita emissions

✓Emissions per GDP unit

Renewable Energy in LAC

23% of total energy supply (2007).

• Large potential.

