INPA'S APPROACH TO ESTIMATE CHANGES IN **CARBON STOCKS AND RELATED UNCERTAINTIES**

by

Niro Higuchi

INPA – Nat'l Institute for Research in the Amazon

FRA 2005 BIOMASS CATEGORIES

Above-ground biomass: All living biomass above the soil including stem, stump, branches, bark, seeds, and foliage.

Below-ground biomass: All living biomass of live roots. Fine roots of less than 2mm diameter are excluded because these often cannot be distinguished empirically from soil organic matter or litter.

Dead wood biomass: All non-living woody biomass not contained in the litter, either standing, lying on the ground, or in the soil. Dead wood includes wood lying on the surface, dead roots, and stumps larger than or equal to 10 cm in diameter or any other diameter used by the country.

Uncertainty

Standard deviation of the mean $s_x = s / \sqrt{n}$

CI 95% => limits are approximately 2 s_x = normal distribution

 $CI (95\%) = \bar{x} \pm 2 s_{\bar{x}}$

In summary => CI is the uncertainty in the estimate of the standard deviation.

Uncertainty in percentage = ($2 s_{\bar{x}} / \bar{x}$) * 100

Source: http://www.ipcc-nggip.iges.or.jp/public/gp/english/ - Annex 1

CHANGES IN CARBON STOCKS < primary, managed, and secondary forests >

THANK YOU!

STEM BIOMASS

Sample for water and C contents, and nutrients and age

COARSE AND FINE BRANCHES AND LEAVES

COARSE ROOT (diam>2mm) BIOMASS

PRIMARY FOREST DESCRIPTIVE STATISTICS

a) ABOVEGROUND BIOMASS

	dbh (cm)	total height (m)	fresh weight (kg)
N of cases	494	494	494
Minimum	4.5	5.6	8.3
Maximum	120	41.4	25,634

Dominant height of this site = 30 m (4.2% uncertainty)

b) BELOWGROUND BIOMASS

	dbh (cm)	total height (m)	fresh weight (kg)
N of cases	131	131	131
Minimum	5	5.9	1.26
Maximum	85	34.5	2,709.49

SECONDARY FOREST DESCRIPTIVE STATISTICS

a) ABOVEGROUND BIOMASS

	dbh (cm)	total height (m)	fresh weight (kg)
N of cases	593	593	593
Minimum	5	3.9	5.4
Maximum	37.2	27.0	1,690.2

b) BELOWGROUND BIOMASS

	dbh (cm)	total height (m)	fresh weight (kg)
N of cases	65	65	65
Minimum	5.2	7.4	.52
Maximum	27.5	22.1	78.8

PRIMARY FOREST

SECONDARY FOREST

V

PRIMARY FOREST – ABOVEGROUND BIOMASS Ln FW = a + b In DBH

FW = *fresh* weight in kg; *DBH* = *diameter* at *breast* height in *cm*

Dep Var: LNFW **N: 494** Multiple R: 0.9863 Squared multiple R: 0.9728 Adjusted squared multiple R: 0.9727 Standard error of estimate: 0.3021 Mean In FW = 5,0385 Uncertainty (%) = 0.55

<u>Effect</u>	<u>Coefficient</u>	<u>Std Err</u>	or	<u>Std Coef</u>	Toler	ance	<u>i</u>	<u>t</u>	<u>P(2 Ta</u>	1)
CONSTANT	-1.4452	0.050	7	0.0000			-28.4	4846	0.0000	
LND	2.5252	0.019	0	0.9863	1.00	00	132.6	6450	0.0000	
	Analy	sis of	⁻ Va	ariance						
<u>Source</u>	<u>Sum-of-Sq</u>	<u>uares</u> <u>c</u>	<u>df</u>	<u>Mean-Squ</u>	are	F-rat	io	<u> </u>		
Regression	1606.003	37	1	1606.00	37	1759	4.708	88	0.0000	
Residual	44.908	36 49	92	0.09	13					

PRIMARY FOREST – ABOVEGROUND BIOMASS Ln FW = a + b In DBH + In HT

FW = fresh weight in kg; DBH in cm; HT = total height in m

Dep Var: LNFW **N: 494** Multiple R: 0.9906 Squared multiple R: 0.9813 **Adjusted squared multiple R: 0.9812 Standard error of estimate: 0.2506 Mean In FW = 5,0385 Uncertainty (%) = 0.45**

Effect	<u>Coefficient</u>	<u>Std Error</u>	Std Coef	<u>Tolerance</u> <u>t</u> <u>P(</u>	<u>2 Tail)</u>
CONSTAN	T -2.6262	0.0894	0.0000	29.3759	0.0000
LND	2.0587	0.0349	0.8041	0.2044 58.9467	0.0000
_NHT	0.8584	0.0573	0.2043	0.2044 14.9731	0.0000

<u>So</u> Re

Re

Analysis of Variance								
urce	Sum-of-Squares	<u>df</u>	<u>Mean-Square</u>	<u>F-ratio</u>	<u>P</u>			
gression	1620.0812	2	810.0406	12900.3167	0.0000			
sidual	30.8310	491	0.0628					

PRIMARY FOREST – BELOWGROUND BIOMASS Ln FW_{root} = a + b ln DBH

FW = *fresh* weight in kg; *DBH* = *diameter* at *breast* height in *cm*

Dep Var: LNFW **N: 131** Multiple R: 0.9718 Squared multiple R: 0.9443 **Adjusted squared multiple R: 0.9439 Standard error of estimate: 0.4541 Mean In FW = 3,0887 Uncertainty (%) = 2.57**

<u>Effect</u>	<u>Coefficient</u>	<u>Std Error</u>	<u>Std Coef</u>	<u>Tolerance</u>	<u>t</u>	<u>P(2 Tail)</u>
CONSTANT	-3.8660	0.1539	0.0000		-25.1204	0.0000
LND	2.6816	0.0573	0.9718	1.0000	46.7707	0.0000

Analysis of Variance								
<u>Source</u>	Sum-of-Squares	<u>df</u>	<u>Mean-Square</u>	<u>F-ratio</u>	<u>P</u>			
Regression	451.0887	1	451.0887	2187.4953	0.0000			
Residual	26.6014	129	0.2062					

PRIMARY FOREST – BELOWGROUND BIOMASS Ln FW = a + b In DBH + In HT

FW = fresh weight in kg; DBH in cm; HT = total height in m

Dep Var: LNFW **N: 131** Multiple R: 0.9722 Squared multiple R: 0.9452 **Adjusted squared multiple R: 0.9444 Standard error of estimate: 0.4522 Mean In FW = 3,0887 Uncertainty (%) = 2.56**

<u>Effect</u>	<u>Coefficient</u>	<u>Std Error</u>	<u>Std Coef</u>	<u>Tolerance</u>	<u>t</u>	<u>P(2 Tail)</u>
CONSTANT	-3.4408	0.3302	0.0000		-10.4205	0.0000
LND	2.8420	0.1242	1.0299	0.2113	22.8844	0.0000
LNHT	-0.3031	0.2084	-0.0654	0.2113	-1.4541	0.1484

Analysis of Variance									
<u>Source</u>	Sum-of-Squares	<u>df</u>	<u>Mean-Square</u>	<u>F-ratio</u>	<u>P</u>				
Regression	451.5210	2	225.7605	1104.2534	0.0000				
Residual	26.1691	128	0.2044						

SECONDARY FOREST – ABOVEGROUND BIOMASS In FW = a + b In D

FW = fresh weight in kg; D = dbh in cm

Dep Var: LNPF **N: 593** Multiple R: 0.9420 Squared multiple R: 0.8873 Adjusted squared multiple R: 0.8872 Standard error of estimate: 0.3770 Mean In FW = 4.1196 Uncertainty (%) = 0.75

<u>Effect</u>	<u>Coefficient</u>	<u>Std Error</u>	<u>Std Coef</u>	<u>Tolerance</u>	<u>t</u>	<u>P(2 Tail)</u>
CONSTANT	-0.8481	0.0744	0.0000		-11.3927	0.0000
LND	2.1898	0.0321	0.9420	1.0000	68.2269	0.0000

Analysis of Variance

<u>Source</u>	<u>Sum-of-Squares</u>	<u>df</u>	<u>Mean-Square</u>	<u>F-ratio</u>	<u>P</u>
Regression	661.7202	1	661.7202	4654.9120	0.0000
Residual	84.0138	591	0.1422		

SECONDARY FOREST – ABOVEGROUND BIOMASS In FW = a + b In D + c In HT

FW = fresh weight in kg; D = dbh in cm; HT = total height in m

Dep Var: LNPF **N: 593** Multiple R: 0.9522 Squared multiple R: 0.9066 **Adjusted squared multiple R: 0.9063 Standard error of estimate: 0.3436 Mean In FW = 4.1196 Uncertainty (%) = 0.69**

<u>Effect</u>	<u>Coefficient</u>	<u>Std Error</u>	<u>Std Coef</u>	<u>Tolerance</u>	<u>t</u>	<u>P(2 Tail)</u>
CONSTANT	-1.9222	0.1187	0.0000		-16.1927	0.0000
LND	1.7278	0.0511	0.7433	0.3277	33.8159	0.0000
LNHT	0.8299	0.0753	0.2424	0.3277	11.0266	0.0000

Analysis of Variance

<u>Source</u>	Sum-of-Squares	<u>df</u>	<u>Mean-Square</u>	<u>F-ratio</u>	Р
Regression	676.0754	2	338.0377	2863.1400	0.0000
Residual	69.6586	590	0.1181		

SECONDARY FOREST – BELOWGROUND BIOMASS In FW = a + b In D

FW = fresh weight in kg; D = dbh in cm

Dep Var: LNFW **N: 65** Multiple R: 0.8421 Squared multiple R: 0.7091 **Adjusted squared multiple R: 0.7045 Standard error of estimate: 0.5971 Mean In FW = 1.2502 Uncertainty (%) = 11.8**

<u>Effect</u>	<u>Coefficient</u>	<u>Std Error</u>	<u>Std Coef</u>	<u>Tolerance</u>	<u>t</u>	<u>P(2 Tail)</u>
CONSTANT	-3.5838	0.3970	0.0000		-9.0262	0.0000
LND	2.3268	0.1878	0.8421	1.0000	12.3925	0.0000

Analysis of Variance

<u>Source</u>	<u>Sum-of-Squares</u>	<u>df</u>	<u>Mean-Square</u>	<u>F-ratio</u>	<u>P</u>
Regression	54.7518	1	54.7518	153.5738	0.0000
Residual	22.4606	63	0.3565		

SECONDARY FOREST – BELOWGROUND BIOMASS In FW = a + b In D + c In HT

FW = fresh weight in kg; D = dbh in cm; HT = total height in m

Dep Var: LNFW **N: 65** Multiple R: 0.8424 Squared multiple R: 0.7096 **Adjusted squared multiple R: 0.7002 Standard error of estimate: 0.6014 Mean In FW = 1.2502 Uncertainty (%) = 11.9**

<u>Effect</u>	<u>Coefficient</u>	<u>Std Error</u>	<u>Std Coef</u>	<u>Tolerance</u>	<u>t</u>	<u>P(2 Tail)</u>
CONSTANT	-3.3807	0.7356	0.0000		-4.5958	0.0000
LND	2.4147	0.3275	0.8739	0.3334	7.3731	0.0000
LNHT	-0.1550	0.4711	-0.0390	0.3334	-0.3289	0.7433

Analysis of Variance

<u>Source</u>	<u>Sum-of-Squares</u>	<u>df</u>	<u>Mean-Square</u>	<u>F-ratio</u>	<u>P</u>
Regression	54.7909	2	27.3955	75.7540	0.0000
Residual	22.4215	62	0.3616		

V

PRIMARY FOREST Water content in different tree components

	ABOVE	GROUND	BELOWGROUND		
	STEM n = 132	CROWN n = 132	COARSE n = 76	FINE n = 75	
mean	37.6	44.1	48.1	43.9	
sd	8.3	7.1	9.7	8.8	
Incertainty %	3.7	2.7	4.6	4.6	

ABOVEGROUND: stem (65%) and crown (35%) CROWN: coarse branches (55%); fine branches (39%) and leaves (6%)

> Water content: Aboveground => 40% => 37.6 * 0.65 + 44.1 * 0.35 = 39.8% Belowground => 48%

PRIMARY FOREST Carbon content in different tree components

	S 7	EM		ROOT					
	n =	= 44	WO	WOODY TISSUE n = 106		BARK n = 10:		}	FINE n = 92
	0%	100%	0%	50%	100%	0%	50%	100%	bulk
iean	48.7	48.3	47.3	47.0	46.9	42.6	42.7	42.7	45.7
sd	1.5	1.0	2.9	2.7	2.6	4.7	4.3	4.2	2.6
Inc.	1.0	0.6	1.3	1.1	1.1	2.1	1.9	1.9	1.1

Inc. = uncertainty in %

Carbon contents: aboveground => 48.5% belowground => 47%

SECONDARY FORESTS

Water content in different tree components

Component	S-8 site	e – 14 y n = 31	r old	ZF-2 site – 23 yr old n = 30		
Uncertainty = 4.4%	(1)	(2)	(3)	(1)	(2)	(3)
Stem	47.1	0.6761	31.8	47.1	0.6704	31.6
Coarse Branch	47.0	0.0806	3.8	47.0	0.1111	5.2
Fine Branch	51.7	0.1867	9.7	51.7	0.1715	8.9
Leaf	65.2	0.0535	3.5	65.2	0.0467	3.0
Flower	57.8	0.0030	0.2	57.8	0.0003	0.0
			49.0			48.7

(1) = water content; (2) = contribution to the total aboveground biomass and (3) = weighted water content aboveground = 49%

belowground => 47.3% (uncertainty = 7.4%)

SECONDARY FORESTS Carbon content in different tree components

component	C (%)	uncertainty (%)
stem	44,82	0,86
coarse branch	44,79	2,04
root	44.82	0,01

CARBON CONTENT IN SECONDARY FOREST => 44.5%

CFI - CONTINUOUS FOREST INVENTORY

"CAPOEIRA" (SECONDARY FOREST) SITES

1991 => One-hectare plot clear cut and burned. and abandoned

2005 => 14 years later => 5 quadrates of 20 x 20 m each were clear cut => n = 252

1982 => Five-hectare plot clear cut. reforested. and abandoned

2005 => 23 years later => 5 quadrates of 20 x 20 m each were clear cut => n = 349

annual increment (MAI) of capoeiras in metric tones

Quadrate	S-8	ZF-2	MAI	MAI
	per ha	per ha	S-8	ZF-2
1	216.93	223.15	15.49	9.70
2	175.51	230.94	12.54	10.04
3	148.03	260.19	10.57	11.31
4	126.66	259.22	9.05	11.27
5	86.40	242.32	6.17	10.54
mean	150.71	243.17	10.76	10.57
st deviation	49.30	16.57	3.52	0.72
CI (95%)	43.21	14.53	3.09	0.63
uncertainty (%)	29	6	29	6

In South Pará, FABs for capoeiras of 5, 10 and 20 years old are, respectively, 26, 88 e 162 t.ha⁻¹.

ALLOMETRIC EQUATIONS FOR CAPOEIRAS - SINGLE- AND DOUBLE ENTRY

data set	model	n	а	b	С	r ²	S _{y.x}
S-8	(1)	252	-0.9178	2.1848		0.88	0.4046
S-8	(2)	252	-1.8338	1.7335	0.7662	0.89	0.3803
ZF-2	(1)	349	-0.7480	2.1659		0.89	0.3647
ZF-2	(2)	341	-1.9338	1.7540	0.8285	0.92	0.3074
S8 + ZF2	(1)	601	-0.8222	2.1751		0.88	0.3864
S8 + ZF2	(2)	587	-1.9255	1.7239	0.8349	0.91	0.3427

Model (1) \Rightarrow In FAB = a + b In D;

Model (2) => In FAB = a + b In D + c In HT

Where:

FAB = fresh aboveground biomass in kg; D = dbh in cm; HT = total height in m; <u>a</u>, <u>b</u> and <u>c</u> = regression coefficients; r^2 = determination coefficient and s_{v,x} = standard error of estimate

FAB – difference in %

S-8	Nelson (%)	Higuchi (%)	S-8 (%)	ZF-2 (%)	all (%)
1	-22	48	-15	-5	-0.09
2	-22	53	-17	-7	-0.11
3	-25	46	-20	-10	-0.14
4	-11	57	3	16	0.10
5	-10	63	3	16	0.10
Diff	-18	54	-9	2	-3
ZF-2	Nelson (%)	Higuchi (%)	S-8 (%)	ZF-2 (%)	all (%)
1	-23	43	-14	-4	-8
2	-29	38	-24	-15	-19
3	-33	35	-31	-23	-27
4	-15	64	-9	2	-3
5	-26	45	-20	-10	-15
diff	-25	45	-20	-10	-14