
Common Carbon Metric 2.0: CCM2.0

Training Exercises

ABOUT

The Common Carbon Metric 2.0 (CCM2.0) is a tool for measuring building energy related greenhouse gas (GHG) emissions and energy savings potential of the stock of new and existing buildings in an investment portfolio, municipality, region or country.

Joint UN Environment – UNFCCC Workshop on Mitigation in the building sector.

Bonn, Germany August 01 2017

Building Policies for a Better World

ACTIVITY 1 - SETTING UP & GETTING FAMILIAR WITH CCM2.0

The CCM 2.0 website is available at http://ccmbuildings.net/. You can log in by clicking on the "Log in" button in the top right corner. If you don't have an account yet, you can register one by using the "Register" button instead, filling in all the mandatory fields in the upcoming form and clicking on "Create new account". Every user is able to create assessments after logging and editing their own assessments.

1a. Register & Log-in (Please write down your user name and password for future use)

1b. Review the Assessment Directory

Open 'Baseline Top-Down' – This is an example of a completed 'top-down' baseline assessment *Explore the results in table and visual view. Note the data required and the units/metrics of outputs.*

Open 'Baseline Bottom-Up' – This is an example of a completed 'bottom-up' baseline assessment *Explore the results in table and visual view. Note the data required and the units/metrics of outputs.*

ACTIVITY 2 - CONDUCTING A BASELINE ASSESSMENT

To conduct an assessment, go to 'The Tool' tab. The tool is based on a calculation methodology that conforms to 'measurable, reportable and verifiable (MRV)' data standards. It offers three ways of generating energy use and GHG emissions base lines for a stock of buildings (top-down, bottom-up and hybrid).

Top-Down:

This approach is useful if you only have access to aggregated building energy use data such as national, regional or municipal statistics on residential and/or non-residential energy-use. This approach requires information on the total building stock, total energy use and shares of different building types in the total energy use of the building sector. This approach is mostly useful, when the assessment has to be done on a large scale (e.g. country) and there is a lack of detailed data on that level. The tool guides you through a simple step-by-step process to disaggregate this data to generate MRV emissions base line by building type.

2a: Calculate an Energy & Emissions Baseline using the Top-Down approach.

Using the online version of the tool, select 'baseline' assessment.

Enter the Name of the Assessment:

'(Your Family Name) Bonn August 2017 Top-Down'

Description: Bonn CCM Training Workshop 1 August 2017 – Top Down Baseline Test.

Next: Select 'Top Down' Assessment.

That Alband DE Wild Give Senergy Base-Line Data Set

Table 1. Fuels used for Electricity Generation in 2010				
Fuel type	GWh/yr	%		
Natural Gas	128 525,00	66,87		
Coal&Lignite	34 582,11	17,99		
oil	922,61	0,48		
Hydro	3 760,73	1,96		
Renewable	9 984,55	5,20		
Imported	14 414,49	7,50		
total	192 189,49	100		

Table 1: Fuels used for Electricity Generation in 2016

From :EPPO ENERGY STATISTIC

Table2:Electricity used by Sectors in 2016

Sector	GWh/yr	%
Residential	41 286	23,61
Commercial	52 987	30,31
Industrials	74 773	42,77
Others	5 787	3,31
total	174 833	100,00

From :EPPO ENERGY STATISTIC

Table3:Fuel used in residential sector in 2016

Sector	kWh/yr	ktoe/yr
LPG	21 631 800 000	1860,00
Total	21 631 800 000	1860,00

From : EPPO ENERGY STATISTIC

Building Type: Total Residential

Total Net Floor Area: 1089105435 m²

Total No. Occupants: 60000000 persons (est. 3 per house)

Emission Factors (Thailand): Refer to table above.

Bottom-Up:

This approach is useful if you have more detailed measured energy use data from a representative sample of buildings in your building stock. You will be able to build-up an MRV baseline by entering more detailed energy data from individual buildings in different categories of building types – such as single or multifamily residential, commercial, hospitals etc. This approach focuses on (one or several) individual buildings and requires information on floor area and, total energy consumption in kWh and fuel mix for each particular building. Bottom-up approach can be applied as well, if all required data can be found for representative case studies, typical buildings or assumed averages. It also allows for utilizing experts' judgments (e.g. regarding specific energy consumption values) in case measured data are impossible to obtain.

The Bottom-up approach is very useful for a certain (limited) group of buildings and/or for a concrete mitigation project, but can be less useful for establishment of a national baseline or Business as Usual (BAU).

2b: Calculate an Energy & Emissions Baseline using the Bottom Up Approach

In this example the following energy data, collected by KMUTT from the NHA Project household sample data, is required.

no. of houses in 2016

Sector	value	units		
Houses	19 801 917	units		
From:PEA,MEA Statistic				

Estimation of utilization area of all residential sector

units

m2

Area	1 089 105 435
Sector	value

From:KMUTT

Emission Factor

Sector	value	units
Electricity	0,5813	kgCO2/kWh
LPG	0,22736	kgCO2/kWh
From : TGO		

Start a new assessment

Enter the Name of the Assessment:

'(Your Family Name)_Bonn August 2017 Bottom Up'

Description:

Bonn CCM Training Workshop 1 August 2017 – Bottom Up Baseline Test. Next: Select 'Bottom Up' Assessment.

Floor Area, Electricity & Occupancy Data NHA sample projects BLDG. Type Construction	Floor area per unit on year (m2) Unit surveyed Area surveyed no. of occuplants	Total occuplants
---	---	------------------

verage monthly LPG use(kWh)

Area, Occupancy and Elect	ricity use								
NHA sample projects	· · · · · · · · · · · · · · · · · · ·	Construction year	Floor and ther unit	Unit surveyed		no. of occuplants	Tota SUSYEWBBants	Total monthly co គ នមន្តាពុ <u>វត្រព</u> ុ(ស្រូVh)	Average monthly consumption(kW(h)
NHA sample projects LADLUMKEAW	BLDG. Type single house	Construction year 2010	(m2) 61,97	Unit surveyed 315	Area surveyed 19 520,55	no. of occuplants 5	surveyed 1575	consumption (\$ 1094),70	consumption(206)65
BANGKEAW	twin house	2009	54,835	158	8 663,93	4	632	36 024,47	228,00
RANGSIT	row house	2012	55,22	350	19 327,00	4	1 400	50 404,74	144,01
SARAYA NHA sample projects total	flat BLDG. Type all	2006 Construction year	Floor area per40%1# (m2)	334 Unit surveyed 1157	15 743,65 Area surveyed	no. of occuplants	Total occuplarit@02 surveyed	Total moភរិថាឱ្យ58,68 consumption(kWh)	Average montfl@y24 consumption(kWh)

Equipment	lighting	air conditioners	electric appliances
share of Energy use	15%	50%	35%

average monthly LPG used with Energy Consumption by File LKG set with the set with

Fuel use			Number of all NULA and	
NHA sample projects	BLDG. Type	average monthly LPG use(kWh)	Number of all NHA proj BLDG. Type	no. of units
LADLUMKEAW	single house	158	single house	3152
BANGKEAW	twin house	137	twin house	1092
RANGSIT	row house	120	row house	635
SARAYA	flat	0	flat	2176
total	all		total	7055

Hybrid Approach:

This approach requires information on total floor area and, most importantly, specific energy consumption in kWh/m2, which allows for calculating total energy use for different end-uses, building types, climate zones, etc. at the level of a region, country or city. The Hybrid approach can be use on a smaller scale, when it is important to analyze different influences on energy use and GHG emissions (e.g. in different building types or climate zones), or in cases where there is a lack of data and need for detailed assessment on larger scales (country, region, etc.).

2c: Calculate an Energy & Emissions Baseline using the Hybrid Approach

Start a new assessment

Enter the Name of the Assessment: (Your Family Name)_Bonn August 2017 Hybrid'

Description:

Bonn CCM Training Workshop 1 August 2017 – Hybrid Baseline Test.

Next: Select 'Hybrid' Assessment.

Based on the Bottom-Up Case Studies Total Floor Areas calculate the energy intensity in kWh/m^2 (or use the average of results from the Bottom-Up and top down baselines) – *note any discrepancy in the final energy intensity results*.

ACTIVITY 3: ESABLISH A FUTURE LINE SCENARIO

'Futureline' analysis follows the same steps to make estimations for the first ('base') year, however, as future-line analysis also includes estimations for the future, it requires data for more parameters such as renovation rates, changes in occupancy, new construction rates, and includes additional calculations to enable projection of future energy demand and emissions.

The CCM2.0 Tool will guide you through the input date required in the futurelines sections. The data requirements for futurelines change depending on whether you are working in top-down, bottom-up or hybrid modes. You must calculate a baseline before you can begin working on futurelines for a particular project or jurisdiction.

Start a new assessment

Enter the Name of the Assessment:

'(Your Family Name)_Bonn August 2017 Future Line 1'

Description:

Bonn CCM Training Workshop 1 August 2017 – Future Line 1.

Upload a saved top-down baseline assessment

Data:

Period of Analysis:	Base year: 2016 – 2030
Renovation Rate:	Fixed at 2%/yr
Demolition Rate:	Fixed at 20%/yr
Construction Rate:	Fixed at 30%/yr
Occupancy Rate:	Fixed at 10%/yr
Electricity Use Change Rate:	Fixed at 30%/yr
LPG Change Rate:	Fixed at 20%/yr

Note: You can also select variable for any of the above criteria if you want to model changes in specific years or periods.

Analyse and Compare

Once you have established a baseline, you can generate comparisons of base-line and futureline scenarios and generate results in graphic or table formats. These outputs can be used to support policy recommendations, roadmaps and applications for climate finance.

Building Policies for a Better World

GBPN

Global Buildings Performance Network

64 rue de Tocqueville 75017 Paris France

Contact: Peter Graham: pg@gbpn.org +61457779096

www.gbpn.org @GBPNetwork