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Technical Change Theory and Learning Curves:  
Patterns of Progress in Electricity Generation Technologies

Tooraj Jamasb*

Better understanding of the role of learning in technical progress is 
important for the development of innovation theory and technology policy. This 
paper presents a comparative analysis of the effect of learning and technical 
change in electricity generation technologies. We use simultaneous two-factor 
learning and diffusion models to estimate the effect of learning by doing and 
learning by research on technical progress for a range of technologies in four 
stages of development. We find learning patters broadly in line with the perceived 
view of technical progress. The results generally show higher learning by research 
than learning by doing rates. Moreover, we do not find any development stage 
where learning by doing is stronger than learning by research. We show that 
simple learning by doing curves overstate the effect of learning in particular for 
newer technologies. Finally, we find little substitution potential between learning 
by doing and research for most technologies.

1. iNTRODUCTiON

The	importance	of	technological	progress	as	a	major	force	behind	factor	
productivity	and	economic	growth	is	well	established	in	the	literature.	The	focus	
of	early	literature	on	science	and	technology	was,	however,	on	the	effect	and	mea-
surement	of	technical	change	on	output	and	growth.	Technical	change	was	treated	
as	an	exogenous	phenomenon	to	the	economy	a	view	which	posed	clear	limita-
tions	for	policy	analysis.	Since	the	1960s,	the	focus	of	the	literature	has	shifted	to	
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the	role	of	economic	factors	in	technical	change	(Thirtle	and	Ruttan,	1987).	The	
new	paradigm	views	technical	change	as	an	endogenous	factor	and	that	 it	may	
be	induced.	This	view	is	reflected	in	the	increased	interest	in	the	use	of	learning	
curves	in	technology	analysis.	Recently,	the	notion	of	induced	technical	change	
has	been	adopted	in	analysis	of	energy	and	environmental	technologies	(Criqui	et	
al.,	2000;	Grubb	et	al.,	2002).

Innovation	 theory	and	cross-technology	analysis	using	 learning	curves	
can	shed	light	on	the	characteristics	and	the	stages	of	technical	change	process.	
It	 is	also	of	interest	to	improve	the	process	of	learning	and	identify	those	tech-
nologies	that	are	likely	to	achieve	most	progress	during	a	given	period.	Further,	
it	is	important	to	determine	whether	resources	allocated	to	promotion	of	a	given	
technology	are	better	spent	on	research	and	development	(R&D)	or	on	capacity	
promotion	policies.

In	recent	years,	learning	curves	have	been	applied	to	analysis	of	induced	
technical	change	in	energy	technologies.	The	most	commonly	used	forms	are	sin-
gle-factor	learning	curves	that	estimate	the	effect	of	cumulative	capacity	or	pro-
duction	on	reducing	the	cost	of	technology	(learning	by	doing).	This	framework	
overlooks	the	effect	of	R&D	as	an	influential	factor	and	policy	tool	(learning	by	
research).	As	a	result,	not	only	the	effect	of	R&D	on	technical	progress	cannot	be	
determined	but	the	estimates	of	learning	by	doing	can	also	be	affected.	In	addi-
tion,	understanding	the	relative	importance	of	learning	by	doing	and	learning	by	
research	on	technical	progress	is	important	for	improving	innovation	theory	and	
energy	technology	policy.

This	paper	presents	a	comparative	analysis	of	technical	change	in	a	range	
of	 electricity	 generation	 technologies	 at	 different	 stages	 of	 development	 using	
extended	learning	curves	that	reflect	the	main	tenets	of	innovation	theory.	We	use	
simultaneous	two-factor	learning	curves	and	diffusion	models	to	estimate	the	ef-
fect	of	learning	by	doing	and	learning	by	research	on	technical	progress.	We	then	
examine	the	relative	importance	of	R&D	and	capacity	deployment	for	different	
technology	 categories.	 The	 results	 generally	 show	 higher	 learning	 by	 research	
than	 learning	 by	 doing	 rates.	 We	 do	 not	 find	 any	 technological	 development	
stage	 where	 learning	 by	 doing	 is	 the	 dominant	 driver	 of	 technical	 change.	We	
also	compare	the	learning	by	doing	results	from	our	model	with	those	of	single	
factor	learning	by	doing	models.	Finally,	we	calculate	the	elasticity	of	substitu-
tion	between	R&D	and	capacity	deployment	for	the	technologies	examined.	The	
next	section	reviews	the	relevant	literature	and	concepts	of	technical	change	and	
technology	learning	curves.	Section	3	describes	the	methodology	and	data	used	
for	the	analysis	in	the	paper.	Section	4	presents	the	results	of	the	analysis.	Section	
5	summarizes	and	concludes	the	paper.

2. iNDUCED TECHNiCAL CHANGE AND LEARNiNG CURVES

Technical	change	is	generally	conceptualized	as	a	gradual	process	that	
involves	different	stages	of	progress.	The	process	and	its	stages	have	been	de-



scribed	in	various	ways.	The	most	established	of	 these	 is	Schumpeter’s	 inven-
tion-innovation-diffusion	 paradigm	 (Schumpeter,	 1934;	 1942).	 Briefly,	 within	
this	 framework,	 invention	 is	 viewed	 as	 the	 generation	 of	 new	 knowledge	 and	
ideas.	In	the	innovation	stage,	inventions	are	further	developed	and	transformed	
into	new	products.	Finally,	diffusion	refers	 to	widespread	adoption	of	 the	new	
products.	The	relationship	between	the	stages	of	technical	progress	is	no	longer	
thought	 to	be	linear	but	a	non-linear	process	with	feedbacks	between	its	com-
ponents	(Stoneman,	1995).	However,	this	process	is	not	well	understood	and	a	
coherent	theory	of	technical	change	remains	illusive.	The	concepts	and	charac-
teristics	of	 the	stages	and	process	of	 technical	change	also	apply	 to	electricity	
generation	technologies	as	these	generally	evolve	through	similar	stages	of	prog-
ress	(see	Jensen,	2004).

R&D	and	capacity	deployment	are	the	main	drivers	of	change	in	energy	
technologies	(Skytte	et	al.,	2004;	Criqui	et	al.,	2000).	R&D	has	a	role	in	all	stages	
of	technical	progress	although	the	nature	of	it	can	change.	There	is	a	broad	corre-
spondence	between	the	process	of	technical	change	and	the	main	R&D	activities	
–	i.e.	basic	research,	applied	research,	and	development.	Basic	research	is	related	
to	the	invention	and	early	stages	of	conception	of	technology.	As	the	technology	
matures,	applied	research	and	development	are	associated	with	the	innovation	and	
diffusion	 stages	of	 technical	progress.	 In	addition,	 the	knowledge	and	 learning	
by	doing	gained	 from	manufacturing,	 scale	of	production,	and	utilization	 is	an	
important	source	of	technical	progress.

The	perceived	view	of	the	process	of	technical	progress	is	that	the	rela-
tive	 importance	of	R&D	and	 capacity	deployment	 varies	 in	 different	 stages	of	
development	of	a	technology.	At	early	stages	of	development,	technical	progress	
is	 mainly	 achieved	 through	 R&D	 and,	 in	 the	 absence	 of	 commercial	 viability,	
growth	in	capacity	is	limited.	Gradually,	diffusion	of	installed	capacity	begins	to	
grow	as	cost	reductions	and	technology	support	policies	improve	commercializa-
tion	 of	 a	 technology.	While	 capacity	 deployment	 is	 constrained,	 R&D	 plays	 a	
leading	 role	 in	achieving	 technical	progress.	As	 the	 technology	matures	and	 is	
adopted	the	effect	of	capacity	deployment	increases.

It	is,	therefore,	important	to	study	the	relative	importance	of	technology	
push	and	market	pull	 and,	 in	particular,	 their	 role	 in	different	 stages	of	 techno-
logical	development	(see	Grübler	et	al.,	1999).	This	will	enhance	our	understand-
ing	of	the	process	and	stages	of	technical	changes	and	will	help	in	the	design	of	
more	effective	policies	and	allocation	of	technology	promotion	resources	between	
R&D	and	capacity	deployment.	However,	it	takes	a	long	time	before	a	technology	
evolves	from	invention	to	innovation	stage	and	ultimately	becomes	fully	commer-
cialized.	The	transition	from	invention	and	innovation	to	diffusion	stage	is	crucial	
for	technological	progress.	Theory	informed	policies	and	empirical	evidence	could	
improve	the	process	and	contribute	to	better	allocation	of	technology	promotion	
funds	between	R&D	and	capacity	deployment	across	technologies.
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2.1 R&D and Technology Policy

There	is	a	range	of	electricity	generation	technologies	at	different	stages	
of	progress.	Meanwhile,	the	notion	of	induced	technical	change	implies	that	the	
process	of	innovation	can	be	influenced.	The	logical	extension	of	this	is	that	poli-
cies	can	be	devised	to	mitigate	market	failure	for	new	technologies.	A	typology	
of	such	policies,	consistent	with	the	invention-innovation-diffusion	paradigm,	di-
vides	these	into	supply	push	and	demand	pull	measures.

R&D	activities	can	be	subject	 to	 three	 types	of	market	 failure	namely	
indivisibility,	uncertainty,	and	externalities	(Ferguson	and	Ferguson,	1994).	The	
aim	of	technology	push	measures	is	to	overcome	such	barriers	and	to	enhance	the	
knowledge	base	and	development	of	technologies.	In	turn,	market	or	demand-pull	
measures	promote	technical	change	and	learning	by	creating	demand	and	devel-
oping	markets	for	new	technologies.	Government	R&D	and	promotion	schemes	
are	more	important	at	the	basic	research	and	development	stage.	As	the	technol-
ogy	matures	policies	supporting	demand	pull	will	gradually	become	effective	in	
promoting	technical	progress.

2.2 Learning Curves

One	 approach	 to	 measure	 technical	 change	 that	 has	 recently	 received	
renewed	attention	 is	based	on	 the	notion	of	 learning	curves	and	 the	estimation	
of	learning	rates.	Learning	curves	are	used	to	estimate	technical	change	as	a	re-
sult	of	innovative	activities.	The	concept	of	learning	effect	as	a	distinct	source	of	
technical	change	was	presented	in	Wright	(1936)	and	Arrow	(1962)	and	is	often	
termed	as	“learning-by	doing”.	Technical	change	through	learning	effect	is	gener-
ally	derived	from	learning	curves	where	progress	is	typically	measured	in	terms	of	
reduction	in	the	unit	cost	(or	price)	of	a	product	as	a	function	of	experience	gained	
from	increase	in	cumulative	capacity	or	output.

The	concept	of	learning	curves	has	been	known	for	some	time.	However,	
early	 applications	of	 these,	 between	1930s	 and	1960s,	were	 related	 to	 product	
manufacturing	(Wright	1936;	Alchian,	1963;	Arrow,	1962;	Hirsh,	1952).	In	1970s	
and	1980s,	they	were	applied	in	business	management,	strategy,	and	organisation	
studies	(BCG,	1970;	Dutton	and	Thomas,	1984;	Hall	and	Howell,	1985;	Lieber-
man,	1987;	Spence,	1986;	Argote	and	Epple,	1990).	Since	1990s,	 the	pressing	
need	for	economic	and	policy	analysis	of	energy	 technologies	has	been	an	 im-
portant	source	of	interest	in	application	of	learning	curves	to	this	area	(Papineau,	
2006;	McDonald	and	Schrattenholzer,	2001;	Criqui	et	al.,	2000;	IEA,	2000).

In	the	most	common	form,	learning	curves	define	the	cost	or	price	of	a	
technology	as	a	power	function	of	a	learning	source	in	cumulative	form	such	as	
installed	capacity,	output,	or	labour.	The	learning	curve	is	defined	as	in	Equation	
(1).	The	learning	effect	of	capacity	increase	on	the	cost	of	technology	is	expressed	
as	“learning	rate”	LR	measured	in	terms	of	the	percentage	cost	reduction	for	each	
doubling	of	the	cumulative	capacity	or	production	as	in	Equation	(2).



	c	=	a	*	Cape	 (1)

LR	=	1	–	2–e	 (2)

where:
c	 unit	cost		
Cap	 cumulative	capacity	(or	production,	etc.)
e learning	elasticity
a	 constant	
LR	 learning	rate

Some Issues with Single-factor Learning Curves

The	usefulness	of	the	simple	specification	of	learning	curves	in	Equation	
(1),	originally	developed	in	 the	context	of	manufacturing	and	mature	 industries,	
to	technical	change	in	evolving	and	emerging	technologies	is	uncertain.	The	en-
dogenous	view	of	and	proactive	approach	to	technical	progress	implies	that	both	
push	and	pull	instruments	can	induce	technical	progress.	Therefore,	single-factor	
learning	curves	in	energy	technology	analysis	pose	some	known	limitations.	An	
important	shortcoming	of	single-factor	curves	is	that	that	they	do	not	take	the	effect	
of	R&D	on	cost	reduction	into	account.	From	a	policy	point	of	view,	single-factor	
learning	curves	only	lead	to	capacity-oriented	recommendations	while	ignoring	the	
role	of	R&D	in	technical	change.	In	addition,	in	the	absence	of	R&D,	single-factor	
curves	are	likely	to	produce	inaccurate	estimates	of	learning	by	doing	rates.

Moreover,	in	the	context	of	technology	analysis,	there	can	be	a	degree	
of	endogeneity	between	cost	reduction	and	capacity	expansion	-	i.e.	reduction	in	
the	cost	of	a	technology	is	also	likely	to	increase	deployment	of	that	technology.	
Therefore,	within	the	framework	of	the	invention-innovation-diffusion	paradigm,	
single-factor	curves	amount	to	leaving	out	the	main	aspect	of	technology	diffu-
sion.	By	using	cumulative	capacity	only,	single-factor	learning	by	doing	curves	
are	just	a	partial	model	of	the	diffusion	aspect	of	the	technical	change	process.	
Consequently,	 single-factor	 curves	 are	not	 appropriate	 for	 analysis	 of	 evolving	
and	emerging	technologies	where	the	innovation	stage	of	the	technological	pro-
cess	is	generally	of	most	interest.

2.3 Two-factor Learning Curves

In	some	recent	studies,	the	notion	of	learning	effect	has	been	extended	
to	include	“learning-by-researching”	where	R&D	is	assumed	to	enhance	the	tech-
nology	knowledge	base,	which	in	turn	leads	to	technical	progress.	The	learning	
effect	of	R&D	is	accounted	for	in	“two-factor	learning	curves”	that	incorporate	
cumulative	R&D	spending	or	number	of	patents	as	proxies	for	stock	of	knowledge	
(Kouvariatakis	et	al.,	2000).	As	a	policy	analysis	tool,	two-factor	learning	curves	
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acknowledge	a	role	for	R&D	and,	thus,	in	effect,	for	technology	policy	in	promot-
ing	and	achieving	induced	technical	progress.

The	concept	of	two-factor	learning	curves	was	first	proposed	in	Kouvari-
atakis	et	al.	(2000)	where	cumulative	R&D	and	cumulative	production	are	assumed	
to	be	the	main	drivers	of	technology	cost	improvement.	Despite	their	relative	advan-
tages,	however,	there	are	only	few	examples	of	application	of	two-factor	technology	
learning	curves.	Klassen	et	al.	(2005)	and	Cory	et	al.	(1999)	have	applied	two-factor	
learning	curves	in	analysis	of	innovation	in	wind	power.	Also,	Miketa	and	Schrat-
tenholzer	 (2004)	and	Barreto	and	Kypreos	 (2004)	have	used	 two-factor	 learning	
curves	in	large	scale	bottom-up	optimization	models	of	energy	technologies.

3. METHOD AND DATA

3.1 Method

All	 electricity	 generation	 technologies	 produce	 a	 homogenous	 energy	
output.	However,	the	underlying	technical	characteristics	and	knowledge	base	of	
these	can	vary	greatly.	There	are	also	differences	in	contextual	factors	such	as	in	
market	conditions,	policy,	and	regulatory	framework	within	which	the	technolo-
gies	evolve.	In	addition,	technologies	can	be	at	different	stages	of	maturity	and	
exhibit	differences	in	their	progress.	Consequently,	it	is	unlikely	that	there	exists	a	
single	learning	model	and	specification	for	all	technologies	that	produces	the	best	
estimates	of	learning	rates.

Estimates	of	learning	rates	are	context-dependent	and	driven	by	model	
specification,	variables	used,	and	aggregation	level.	Indeed,	there	is	considerable	
variation	in	the	empirical	estimates	of	learning	rates	for	some	energy	technolo-
gies	(McDonald	and	Schrattenholzer,	2001;	Ibenholt,	2002).	Moreover,	estimated	
learning	 rates	 can	vary	depending	on	 the	 time	period	 for	which	 they	 are	mea-
sured	(Claeson	Colpier	and	Cornland,	2002).	Therefore,	there	is	not	an	absolute	or	
unique	learning	rate	for	a	given	technology.	Also,	due	to	the	underlying	differenc-
es,	estimations	of	learning	rates	for	different	technologies	may	lend	themselves	
to	different	models	and	specifications.	This	is	expected	as	the	characteristics	of	
different	technologies	can	vary.

Models	used	 for	 estimation	of	 learning	 rates	 should	 take	 the	effect	of	
R&D	on	reducing	the	cost	of	technology	into	account.	As	suggested	in	Söderholm	
and	Sundqvist	(2003),	inclusion	of	R&D	spending	in	learning	curve	models	adds	
a	controllable	policy	variable	and	reduces	the	problem	of	omitted	variables	bias	
that	would	attribute	some	cost	reduction	achieved	by	R&D	to	cumulative	capacity.	
In	addition,	models	of	learning	need	to	take	into	account	the	endogeneity	of	the	
capacity	and	cost	of	technology	–	i.e.	while	higher	installed	capacity	can	result	in	
unit	cost	reduction,	the	cost	reduction	can	stimulate	market	diffusion	and	policies	
favoring	capacity	deployment.

Figure	1	summarizes	the	theoretical,	practical,	and	policy	conceptualisa-
tion	of	technical	change	and	how	these	relate	to	different	models	of	technology	



learning.	As	shown,	single-factor	learning	curves	(1-FLC)	only	reflect	a	particular	
aspect	of	technical	change	process	–	i.e.	the	effect	of	diffusion	or	market	pull	on	
technology	cost.	The	two-factor	learning	curve	model	(2-FLC)	incorporates	the	
effects	of	both	R&D	(technology	push)	and	capacity	deployment	(market	pull)	on	
technical	change.	However,	the	diffusion	and	installed	in	installed	capacity	of	a	
technology	can	in	turn	increase	as	a	result	of	reduction	in	the	cost	of	that	technol-
ogy	and	with	time.	The	2-FLC	model	can	be	extended	to	also	include	these	effects	
on	 the	 uptake	 of	 technology.	The	 extended	 model	 (2-FLDC)	 therefore	 reflects	
both	 the	causal	 relationship	between	cost	and	diffusion	and	endogeneity	of	 in-
novative	 activities	 and	 diffusion	 as	 policy	 instruments.	Therefore,	 the	 2-FLDC	
model	depicted	in	Figure	1	captures	the	main	features	of	the	Schumpeterian	para-
digm	of	technical	change	as	depicted	in	dashed	arrows.

A	system	of	simultaneous	equations	incorporating	R&D	and	endogene-
ity	of	capacity	on	cost,	transforms	single-factor	learning	by	doing	curves	from	a	
partial	model	to	a	theory-informed	learning-innovation-diffusion	model	that	re-
flects	the	main	elements	and	feedback	in	the	invention,	innovation,	and	diffusion	
paradigm.	To	our	knowledge,	the	only	example	of	such	approach	is	reported	in	
Söderholm	and	Klassen	(2007)	which	uses	simultaneous	learning-diffusion	equa-
tions	to	estimate	the	effect	of	promotion	policies	for	wind	power	in	the	UK,	Spain,	
Denmark,	and	Germany.	The	study	finds	evidence	of	diffusion	i.e.	significant	pos-
itive	effect	from	cost	reduction	on	cumulative	capacity	as	well	as	effect	of	policy	
type	and	design	on	cost	development	of	wind	power.

Figure 1. Technical Change Concepts and Models of Learning Curves

Based	on	the	conceptual	model	of	technical	change	and	innovation	out-
lined	 in	 Figure	 1,	 we	 estimate	 the	 two-factor	 simultaneous	 learning-diffusion	
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model	 (Model-I)	 as	 specified	 in	 Equations	 (3)	 and	 (4).	We	 use	 the	 three-stage	
least	 squares	 (3SLS)	 method	 to	 estimate	 the	 model	 for	 each	 technology	 sepa-
rately.	Equation	(3)	is	a	two-factor	learning	curve	estimating	the	learning	effect	of	
cumulative	capacity	and	R&D	on	the	unit	capacity	–	capacity	–	i.e.	the	diffusion	
or	uptake	of	a	technology.	Equation	(4)	reflects	the	effect	of	cost	reduction	and	
time	on	cumulative	capacity	i.e.	the	diffusion	of	a	technology.

The	unit	cost	of	technology	c	and	the	cumulative	installed	capacity	Cap	
are	treated	as	endogenous variables	–	i.e.	they	are	determined	within	the	model.	
Other	variables	 such	 as	 cumulative	R&D	spending	RD,	 time	variable	T	 (when	
significant),	and	cumulative	number	of	patents	Pat	for	each	technology	are	used	as	
exogenous	variables.	The	exogenous	variables	(e.g.	number	of	technology	patent)	
do	not	need	to	be	part	of	the	structural	variables	and	are	used	in	the	first	stage	of	
the	SLS	estimation	to	regress	the	endogenous	variables	on	exogenous	variables	of	
the	system.	In	addition,	the	cumulative	number	of	patents	Pat	is,	where	appropri-
ate,	used	as	instrumental	variable.

Two-factor	learning	equation:

Logc
nt
	=	a

n
	+	b

n
	*	LogRD

nt
	+	k

t
	*	LogCap

nt
	 (3)

Capacity	diffusion	equation:

LogCap
nt
	=	µ

n
	+	w

n
	*	Logc

nt
	+	χ

t
	*	LogT

nt
	 (4)

Endogenous variables: Logc
nt
, LogCap

nt

Exogenous variables: LogRD
nt
, LogPat

nt
, LogT

nt

where:
c	 unit	cost	of	generation	capacity	(€1999/KW)
RD	 cumulative	private	and	public	R&D	spending	(mill.	€1999)
Cap	 cumulative	installed	generation	capacity	(MW)
T	 time	variable	(years)
Pat	 cumulative	number	of	technology	patents
n technology
t	 learning	period	(1, …, t, …w)

A	general	 issue	 in	estimation	of	 learning	models	 is	 to	separate	 the	ef-
fect	of	learning	on	technical	change	from	that	of	exogenous	progress	that	occurs	
over	time.	Therefore,	a	time	variable	T	is	included	in	the	Equation	(4)	in	order	to	
separate	the	effect	of	time	on	technical	change.	Although	it	s	generally	preferable	
to	include	a	time	variable	in	the	technology	learning	models,	in	cases	where	inclu-
sion	of	this	results	in	wrong	sign	or	insignificant	coefficient,	we	drop	this	variable	
from	the	estimation.	The	main	reason	for	this	is	that	the	sign	and	significance	of	
the	learning	by	doing	and	learning	by	research	coefficients	are	important	for	the	



reliability	of	 the	 learning	 rates	and	elasticity	of	 substitution	 that	are	calculated	
from	these.	It	is	possible	that	some	technologies	are	less	influenced	by	exogenous	
technical	change	or	that	in	the	future	longer	time	series	may	shed	more	light	on	
the	role	of	time	and	exogenous	effects.

The	nature	and	actual	progress	path	of	 some	 technologies	 can	differ	
from	the	above	general	model.	The	first	preference	is	to	apply	the	more	com-
plete	Model-I	to	all	technologies.	However,	for	technologies	that	Model-I	does	
not	 find	 correct	 sign	 or	 statistically	 significant	 coefficients	 we	 use	 a	 simpler	
single-equation	two-factor	specification	(Model-II)	as	in	Equation	(2)	instead.	
Model-II	 uses	 two-stage	 least	 squares	 (2SLS)	 estimation	 method	 and,	 where	
possible,	with	cumulative	number	of	patents	Pat	or	time	variable	T	as	exogenous	
variables.	 Some	 studies	 of	 technology	 learning	 rates	 have	 used	 time	 lags	 or	
some	measures	of	knowledge	depreciation.	Such	extensions	of	learning	models	
are	conceptually	correct	and	useful	but	care	should	also	be	taken	in	the	under-
lying	assumptions	and	application	to	individual	technologies.	For	the	purpose	
of	this	study	which	involves	a	range	of	different	technologies	this	could	not	be	
handled	properly.

We	also	calculate	the	elasticity	of	substitution	between	cumulative	R&D	
spending	and	capacity	deployment	for	the	technologies	studied	here.	Elasticity	of	
substitution	is	a	unit-neutral	measure	of	the	ease	with	which	input	factors	i.e.	in	
this	case	installed	capacity	and	R&D	can	substitute	each	other.	In	a	Cob-Douglas	
specification,	elasticity	of	substitution	can	then	be	calculated	from	Equation	(5).

	 b
n
	 Cap

ntσ	=		——		*		——–	 (5)
	 k

n
	 RD

nt

A	substitution	elasticity	equal	 to	unity	 represents	 the	case	of	 constant	
returns	to	scale.	The	extent	to	which	the	measured	elasticity	deviates	from	unity	
indicates	 the	degree	of	difficulty	with	which	the	main	two	learning	factors	and	
sources	of	technical	change	can	substitute	each	other.

3.2 Data

Any	attempt	to	estimate	technology	learning	rates	is	faced	with	the	choice	
of	proper	level	of	data	aggregation.	The	appropriate	level	of	analysis	is	dependent	
on	the	purpose	of	the	study.	For	example,	country	or	regional-level	studies	allow	
for	examination	of	the	effect	of	policies	and	local	circumstances	on	technology	
cost.	As	this	paper	aims	to	examine	high-level	patterns	of	technical	change,	we	
use	aggregate	global	data	in	order	to	obtain	a	broad	view	of	technological	prog-
ress.	An	advantage	of	using	global	level	data	for	this	analysis	is	that	they	capture	
the	effect	of	unobservable	factors	such	as	spillover	effects	of	technical	progress	
which	occur	at	national	and	regional	levels.	A	potential	drawback	of	using	global	
level	data	is	that	the	accuracy	of	some	of	data	may	decrease.	For	example,	best	
available	technology	or	cost	improvements	can	reach	developing	countries	with	a	
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delay.	In	addition,	some	information	may	be	lost	in	conversion	of	costs	in	different	
currencies	into	a	single	monetary	unit.

Table	1	summarises	the	technologies	and	time	periods	examined	in	this	
study.	The	data	for	the	technologies	used	were	compiled	from	the	information	in	
the	database	of	the	POLES	model.1	The	unit	cost	and	R&D	spending	figures	are	
expressed	 in	constant	1999	US	dollars.	The	R&D	data	comprise	 the	estimated	
government	and	private	spending	on	research	and	development.	The	patent	data	
used	 is	 the	 cumulative	 number	 of	 patents	 for	 the	 technology	 being	 examined.	
Margolis	and	Kammen	(1999)	have	shown	that	there	is	a	positive	and	strong	cor-
relation	between	the	number	of	technology	patents	and	R&D	spending.	The	data	
is	based	on	the	count	of	the	electricity	technology	patents	submitted	by	OECD	
countries	to	the	European	Patent	Office.	A	consistent	procedure	has	been	used	in	
order	to	transform	the	primary	data	in	the	patent	office	classification	coding	sys-
tem	into	specific	electricity	generation	technologies	categories	for	the	model.

The	data	 enables	us	 to	 estimate	 the	 learning	effect	 for	 a	varied	 set	of	
electricity	generation	technologies.	The	choice	of	technologies	studied	here	has	
been	driven	by	availability	of	suitable	data	i.e.	the	key	variables	that	allow	deriva-
tion	of	learning	rates	using	simultaneous	two-factor	learning	and	diffusion	mod-
els.	However,	this	preferred	model	specification	has	had	the	effect	of	limiting	the	
number	of	years	for	which	some	of	these	technologies	could	be	analyzed.	For	the	
combined	cycle	gas	turbine	technology,	the	post-1990	period	was	separated	due	

1.	The	TECHPOL	database	has	been	kindly	provided	by	the	LEPII-EPE,	Grenoble,	France.	This	
database	has	been	assembled	in	the	framework	of	the	SAPIENT	project	(DG	Research)	to	inform	the	
world	energy	simulation	model	POLES.

Table 1. Technologies and Data Summary (Mean Values)
    Cumulative Cumula- Cumula- 
   Unit cost installed tive R&D tive 
   of capacity capacity (mill. patents 
 Technology Year ($1999/kW) (MW) $99) (number)

1	 Pulverized	fuel	supercritical	coal	 1990–1998	 1,493	 19,034	 7,461	 495	

2	 Coal	conventional	technology	 1980-1998	 1,308	 650,512	 35,452	 -	

3	 Lignite	conventional	technology	 1980-2001	 1,275	 105,120	 7,877	 -	

4	 Combined	cycle	gas	turbines	 1980-1989	 573	 1,524	 15,438	 3,324		

	 	 1990-1998	 509	 62,301	 25,448	 7,634	

5	 Large	hydro	 1980-2001	 3,426	 452,558	 17,881	 -	

6	 Combined	heat	and	power	 1980-1998	 920	 31,084	 14,913	 47	

7	 Small	hydro	 1988-2001	 2,431	 23,708	 1,171	 -	

8	 Waste	to	electricity	 1990-1998	 3,528	 11,338	 18,928	 5,407	

9	 Nuclear	light	water	reactor	 1989-2001	 3,015	 334,266	 100,729	 -	

10	 Wind	–	onshore	 1980-1998	 2,094	 2,913	 7,099	 1,634	

11	 Solar	thermal	power	 1985-2001	 4,990	 256	 4,498	 -	

12	 Wind	–	offshore	 1994-2001	 2,066	 82	 261	 -



to	an	apparent	structural	break	in	the	data.	This	coincides	(though	it	may	not	fully	
explain	the	break)	with	the	start	of	liberalization	of	the	sector	in	the	UK	and	later	
in	other	countries	where	gas	was	the	technology	of	choice	in	deregulated	markets	
and	resulted	in	significant	expansion	of	the	installed	capacity.

4. RESULTS

As	discussed	previously,	moving	from	simple	single-factor	learning	curves	
to	 two-factor	 learning-diffusion	 models	 is	 conceptually	 preferable.	 However,	 in	
some	cases,	 this	may	cause	practical	estimation	issues.	While	the	former	models	
always	return	some	significant	result,	the	latter	models	may	not	necessarily	do	so.	
Technology	learning	rates	often	rely	on	econometric	estimations	of	relatively	short	
time-series	data	that	also	exhibit	strong	trends.	The	results	of	regression	analysis	
may,	therefore,	be	spurious	and	the	R-squares	can	overestimate	the	relationship	be-
tween	the	dependent	and	independent	variables.	Moreover,	some	estimated	coef-
ficients	can	become	statistically	insignificant	or	may	even	show	the	wrong	sign.2

There	are	significant	differences	in	the	underlying	technical	and	knowl-
edge	properties	of	the	electricity	generation	technologies.	This	can	result	in	dif-
ferent	models	being	suitable	for	estimation	of	the	learning	rates	for	these.	We	use	
two	model	specifications	to	the	set	of	technologies	in	the	following	order	of	pref-
erence.	We	first	estimate	simultaneous	two-factor	learning-diffusion	models	with	
exogenous	variables	 (Model-I).	Where	 this	 approach	does	not	yield	 significant	
and	 reasonable	 results,	 we	 use	 the	 simpler	 single-equation	 two-factor	 learning	
curves	(Model-II).	

The	results	are	organised	by	placing	the	technologies	in	four	categories	
(mature,	reviving,	evolving,	and	emerging)	that	are	broadly	in	line	with	their	per-
ceived	 level	of	development.	 In	addition,	we	calculate	elasticity	of	substitution	
between	 learning	by	doing	and	 learning	by	researching	 in	 reducing	 the	cost	of	
different	technologies.

4.1 Mature Technologies

The	first	category	of	technologies	consists	of	the	more	mature	and	estab-
lished	generation	sources.	The	technologies	in	this	category	have	been	developed	
and	utilized	over	a	long	period	of	time	and	have	had	a	major	share	of	the	expansion	
of	electricity	sectors	worldwide	(Table	2).	Column	1	of	Table	2	indicates	whether	
a	full	 two-factor	 learning-diffusion	or	a	 two-factor	 learning	model	produced	the	
best	results.	Columns	2	and	3	show	the	estimated	elasticities	of	cumulative	capac-
ity	(and	significance	level)	and	the	corresponding	learning	by	doing	rate	for	the	

2.	Cory	et	al.	(1999)	estimate	two-factor	learning	curves	for	wind	turbines	in	the	United	States	
between	1981	and	1995	and	first	obtain	positive	sign	for	the	coefficient	of	the	number	of	turbines.	
They	attribute	this	to	large	changes	in	market	growth	in	part	of	the	period	of	study	and	find	plausible	
estimates	after	splitting	the	data	into	two	separate	periods.
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“learning	equation”	respectively.	Similarly,	columns	4	and	5	show	the	estimated	
learning	by	research	elasticities	and	rates	respectively.	Columns	6	and	7	show	the	
coefficients	of	diffusion	and	time	for	the	“diffusion	equation”	respectively	–	i.e.	
the	effect	of	reduction	in	the	cost	of	technology	and	time	on	cumulative	capacity.	
Column	8	shows	the	instrumental	variables	used	in	the	learning-diffusion	models.

The	estimated	elasticities	have	all	the	expected	signs	–	i.e.	an	increase	in	
cumulative	capacity	or	R&D	spend	reduces	the	cost	of	technologies.	Likewise,	a	re-
duction	in	the	cost	of	the	ttechnologies	and	an	increase	in	time	results	in	higher	up-
take	and	cumulative	capacity.	The	results	show	that	the	mature	technologies	exhibit	
fairly	comparable	learning	characteristics	–	i.e.	they	show	low	learning	by	research	
and	learning	by	doing	rates.	These	technologies,	due	to	their	mainstream	position	
and	widespread	use,	have	 faced	 little	market	 constraints	 in	 terms	of	commercial	
and	expansion	opportunities	than	other	technologies.	Mature	technologies	are	also	
comparatively	less	capital	intensive	than	the	newer	technologies	owing	to	a	longer	
process	of	technological	improvement	and	relatively	larger	size	of	the	units.

A	notable	exception	is	 the	conventional	coal	 technology,	which	shows	
a	 somewhat	 higher	 learning	 by	 doing	 rate.	While	 the	 learning	 coefficients	 are	
statistically	significant,	the	reasons	for	this	are	not	immediately	clear.	However,	
in	practice,	it	should	be	noted	that,	given	the	high	levels	of	existing	capacity	for	
established	technologies,	a	doubling	of	capacity	and	further	cost	improvements	
can	only	take	place	over	a	long	period	of	time.

4.2 Reviving Technologies

The	next	category	of	technologies	comprises	a	set	of	“reviving”	genera-
tion	sources.	These	technologies	have	been	utilised	for	a	long	time	and	as	such	
are	not	radical	innovations	(Table	3).	The	results	show	that	there	are	some	com-
mon	learning	characteristics	among	the	technologies	in	this	category	in	the	form	
of	low	levels	of	learning	by	doing	while	showing	a	fairly	high	degree	of	learning	
by	research.

The	 low	 learning	 by	 doing	 rates	 for	 these	 technologies	 suggest	 limited	
scope	for	future	cost	reductions	through	capacity	deployment.	Moreover,	the	exist-
ing	high	levels	of	installed	capacity	for	these	technologies	suggest	that	they	have	
limited	scope	for	cost	reductions	–	i.e.	in	terms	of	learning	rates	it	takes	a	longer	
time	for	their	installed	capacity	to	double.	At	the	same	time,	the	learning	by	research	
rates	show	considerable	potential	for	further	cost	reductions.	Although,	the	extent	to	
which	the	high	learning	by	research	rates	can	sustain	in	the	future	is	uncertain.

During	the	periods	studied	here,	the	reviving	technologies	have	achieved	
technical	progress	and	due	to	their	environmental	advantages,	have	benefited	from	
favorable	policies	and	market	opportunities.	As	a	result,	market	uptake	of	these	
technologies	has	been	unconstrained	and	these	have	realized	much	of	their	learn-
ing	by	doing	potential.	Small	hydropower	benefited	from	increased	research	 in	
renewable	energy	sources.	Availability	of	 smaller	and	more	efficient	combined	
heat	and	power	units	have	expanded	the	market	for	this	technology	by	facilitat-
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ing	 industrial	 and	 commercial	 applications	 of	 it.	 Combined	 cycle	 gas	 turbines	
achieved	technical	progress	mainly	by	increasing	the	efficiency	and	reducing	the	
cost	effective	size	of	the	turbines.

Another	shared	characteristic	of	the	reviving	technologies	is	that	R&D	
and	 technical	 change	 has	 lowered	 the	 cost	 efficient	 size	 of	 generation	 plants.	
Moreover,	 similar	 to	 mature	 technologies,	 reviving	 technologies	 are	 not	 com-
paratively	capital	intensive.	Therefore,	the	required	capital	investments	in	these	
technologies	have	decreased	which,	in	liberalised	electricity	markets,	amounts	to	
a	comparative	advantage.

4.3 Evolving Technologies

The	third	category	of	technologies	comprises	“evolving”	generation	re-
sources.	The	technologies	in	this	category	consist	of	nuclear	power	(light	water	
reactor),	waste	 to	electricity,	 and	wind	power.	These	 technologies	have	existed	
either	for	a	shorter	time	and/or	have	experienced	more	constraints,	due	to	envi-
ronmental	concerns	or	planning	issues,	in	their	capacity	expansion	than	reviving	
technologies	during	the	period	under	consideration.

The	estimated	learning	rates	for	these	technologies	show	high	levels	of	
learning	by	doing	as	well	as	learning	by	research	(Table	4).	Nuclear	power	has	not	
been	a	priority	area	in	energy	policy	and	environmental	concerns	with	accidents	
and	 radioactive	waste	have	 significantly	 reduced	 its	market	opportunities.	Wind	
power	has	 enjoyed	 a	 favorable	policy	 environment	 in	many	countries	 and,	 as	 a	
result	 of	 capacity	 deployment	 and	 promotion	 schemes,	 has	 shown	 considerable	
growth	in	recent	years.	However,	due	to	reliance	on	public	subsidies	and	lack	of	
full	cost	competitiveness	in	relation	to	established	conventional	technologies,	wind	
technology	faces	market	constraints	in	reaching	a	significant	share	of	generation	
resource	mix.	Waste	to	electricity	is	in	a	middle	position.	Environmental	concerns	
with	emissions	and	siting	constraints	have	meant	that	this	technology	has	not	expe-
rienced	an	expansive	market	growth.	Moreover,	liberalisation	of	the	sector	in	many	
countries	has	 further	 limited	 the	market	potential	 for	 the	evolving	 technologies.	
Without	government	support	these	technologies	will	not	be	the	obvious	choices	for	
private	investors	operating	in	competitive	markets.

As	noted,	the	evolving	technologies	have	faced	some	market	constraints	
that	have	limited	their	growth	potential.	It	is,	therefore,	plausible	that	these	tech-
nologies	 still	 have	 significant	 potential	 for	 further	 cost	 improvement	 through	
learning	by	doing,	for	example,	throught	increase	in	manufacturing	scale	and	de-
sign	standardisation.	Their	moderate	or	low	levels	of	installed	capacity	also	sug-
gest	that	these	technologies	still	possess	scope	for	significant	capacity	increases	
and	cost	reductions	through	learning	by	doing.

Moreover,	 the	 estimated	 learning	by	 research	 rates	 show	considerable	
potential	for	cost	reduction.	Nuclear	and	wind	power	are	capital	intensive	technol-
ogies	and	the	initial	capital	investments	required	in	these	technologies	are	com-
paratively	higher	than	those	of	fossil	fuel	based	technologies.	As	a	result,	much	of	
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future	cost	improvements	in	these	technologies	can	also	come	from	learning	by	
research	resulting	in	lower	capital	investment	requirements.

4.4 Emerging Technologies

The	final	category	of	 technologies	examined	is	“emerging”	generation	
sources	and	includes	thermal	solar	power	and	offshore	wind	power.	The	emerging	
technologies	have	existed	for	a	relatively	shorter	time	and	show	a	lesser	degree	
of	technical	progress	during	the	period	under	consideration.	The	estimated	learn-
ing	 rates	 for	both	 technologies	 indicate	 low	 learning	by	doing	and	 learning	by	
research	rates	(Table	5).

Both	of	these	technologies	have	environmental	advantages	and	they	have	
benefited	from	promotion	policies	for	renewable	energy	technologies.	However,	
limited	progress	in	technical	change	and	cost	relative	to	other	technologies	has	
constrained	their	market	opportunity	and	diffusion.	This	is	also	reflected	in	our	
results	as,	due	to	a	lack	of	capacity	responsiveness	to	cost	improvement,	learn-
ing-diffusion	models	did	not	return	acceptable	results.	As	a	result	of	market	con-
straints	and	lack	of	cost	competitiveness,	diffusion	of	emerging	technologies	has	
been	slow	and	they	are	yet	to	gain	a	noticeable	share	of	energy	mix.

Similar	to	evolving	technologies,	electricity	sector	liberalisation	has	in-
creased	 the	dependence	of	 the	emerging	 technologies	on	public	R&D	and	pro-
motion	schemes.	In	the	light	of	the	existing	low	levels	of	installed	capacity	and	
presence	of	market	constraints,	the	emerging	technologies	are	likely	to	have	sig-
nificant	potential	for	cost	 improvement	 through	learning	by	doing	and	learning	
by	 research.	Another	similarity	 to	evolving	 technologies	 is	 that	emerging	 tech-
nologies	are	capital	intensive	and	as	a	result,	the	main	potential	for	further	cost	
improvements	in	these	technologies,	from	learning	by	research	and	learning	by	
doing,	need	to	come	in	the	form	of	reductions	in	investment	requirements.

Single-factor	learning	curves	do	not	reflect	the	effect	of	R&D	on	techni-
cal	change	and	overstate	 the	effect	of	 learning	by	doing.	Table	6	compares	 the	
learning	by	doing	rates	from	two-factor	learning	curves	with	those	of	simple	sin-
gle-factor	learning	curves	as	specified	in	Equations	(1)-(2).	As	shown	in	the	table,	
the	 learning	 by	 doing	 rates	 from	 single-factor	 learning	 curves	 are	 higher	 than	
those	estimated	by	two-factor	learning-diffusion	curves.	Moreover,	the	overstate-
ment	 is	 larger	 for	evolving	and	emerging	 technologies,	which	are	of	particular	
interest	to	the	current	energy	technology	policy	debate.	An	implication	of	devising	
policies	based	on	overestimated	learning	by	doing	rates	is	that	they	can	shift	the	
scarce	resources	earmarked	for	innovation	resources	from	more	productive	R&D	
activities	to	less	productive	and	more	costly	capacity	deployment	policies.

The	main	results	and	characteristics	for	the	four	technology	categories	are	
summarized	in	Table	7.	The	results	indicate	that	emerging	technologies	can	initially	
experience	a	relatively	long	period	during	which	they	respond	slowly	to	R&D	ef-
forts	and	capacity	deployment.	In	the	next	development	stage,	as	evolving	technolo-
gies,	they	exhibit	both	high	learning	by	doing	and	learning	by	research	rates.



Table 6. Learning by Doing Rates Using Single-factor Curves
  Learning Learning 
  by Doing Rate by Doing Rate 
 Technology Two-Factor Curves Single-Factor Curves

1	 Pulverized	fuel	supercritical	coal	 3.75%	 4.8%	
2	 Coal	conventional	technology	 13.39%	 15.1%	
3	 Lignite	conventional	technology	 5.67%	 7.8%	
4	 Combined	cycle	gas	turbines	(1980-89)	 2.20%	 2.8%	
	 Combined	cycle	gas	turbines	(1990-98)	 0.65%	 3.3%	
5	 Large	hydro	 1.96%	 2.9%	
6	 Combined	heat	and	power	 0.23%	 2.1%	
7	 Small	hydro	 0.48%	 2.8%	
8	 Waste	to	electricity	 41.5%	 57.9%	
9	 Nuclear	light	water	reactor	 37.6%	 53.2%	
10	 Wind	-	onshore	 13.1%	 15.7%	
11	 Solar	thermal	power	 2.2%	 22.5%	
12	 Wind	–	offshore	 1.0%	 8.3%

Table 7.  Development Stage, Learning Rate, Capital intensity, and  
Market Opportunity for the Technology Categories

 Learning  Learning  Capital Market 
 by Doing by Research intensity  Opportunity

Mature	technologies	 Low	 Low	 Low	 High	
Reviving	technologies	 Low	 High	 Low	 High	
Evolving	technologies	 High	 High	 High	 Low	
Emerging	technologies	 Low	 Low	 High	 Low

Moreover,	it	is	noteworthy	that	reviving	technologies	show	considerable	
potential	 for	 technical	 improvement	 through	 learning	by	 research	although	 they	
do	not	face	significant	market	constraints.	At	the	final	development	stage,	mature	
technologies	exhibit	rather	similar	learning	characteristics	to	emerging	technolo-
gies	in	the	form	of	low	learning	by	doing	and	by	research	rates.	In	addition,	the	
reviving	and	mature	technologies	are	relatively	less	capital	intensive	than	evolv-
ing	and	emerging	technologies.	As	technical	progress	is	mainly	embodied	in	the	
stock	of	capital,	emerging	and	evolving	technologies	have	a	significant	potential	
for	achieving	further	cost	reductions	that	need	to	be	realized.	Furthermore,	mature	
and	reviving	technologies	have	accounted	for	the	bulk	of	generation	capacity	offer-
ing	them	large	market	shares	and	thus	potential	for	learning	by	doing	effect.	On	the	
other	hand,	evolving	and	emerging	technologies	still	face	market	constraints	and	
need	public	support	that	limits	their	potential	benefits	from	learning	by	doing.

As	expected,	some	of	the	results	show	that	unit	cost	reductions	tend	to	in-
crease	market	diffusion	and	adoption	of	technologies.	However,	we	only	find	high	
rates	of	learning	by	doing	in	the	evolving	technologies.	With	a	view	to	a	stylized	
technical	progress	and	diffusion	path,	high	capital	intensity	and	limited	market	op-
portunities	can	slow	the	pace	of	progress	in	emerging	and	evolving	technologies.
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4.5 Elasticity of Substitution Between R&D and Capacity

An	interesting	technology	policy	question	following	from	the	discussion	
of	learning	by	doing	versus	learning	by	research	is	the	extent	to	which	these	may	
substitute	each	other	and	whether	this	may	be	dependent	on	the	stage	of	the	devel-
opment	of	technologies.	This	knowledge	would	be	particularly	useful	in	alloca-
tion	of	public	funds	for	technology	promotion	between	technology	push	(learning	
by	research)	and	market	pull	and	deployment	(learning	by	doing)	measures.	Table	
8	shows	the	average	elasticity	of	substitution	for	the	technologies	during	the	first	
and	second	half	of	the	periods	of	the	study.

As	shown	in	 the	 table,	while	some	technologies	have	moved	closer	 to	
unity	(full	substitution)	others	have	moved	further	away	from	this.	It	is	difficult	to	
determine	the	cause	of	this	from	the	analysis	here.	However,	it	is	important	to	note	
that	the	diverse	nature	of	the	technologies	may	partly	explain	this.	For	most	of	the	
technologies	the	substitution	elasticities	deviate	from	unity	thus	indicating	only	
weak	substitution	possibility	between	learning	by	doing	and	learning	by	research.	
Notable	exceptions	are,	however,	onshore	wind,	offshore	wind,	and	solar	thermal	
power	technologies	where	we	find	some	evidence	of	relative	ease	of	substitution	
between	R&D	and	deployment	as	the	main	innovation	input	factors.	In	addition,	
conventional	 coal	 and	 CCGT	 (1990-98)	 technologies	 show	 some	 indication	 of	
substitution	possibility.

Table 8. Elasticity of Substitution – R&D and Capacity
 Technology First half-period Second half-period

1	 Pulverized	fuel	supercritical	coal	 -0.308	 -0.127	

2	 Coal	conventional	technology	 -0.361	 -0.481	

3	 Lignite	conventional	technology	 -0.180	 -0.205	

4	 Combined	cycle	gas	turbines	(1980-89)	 -121.68	 -14.78		

	 Combined	cycle	gas	turbines	(1990-98)	 -1.142	 -0.644	

5	 Large	hydro	 -0.015	 -0.007	

6	 Combined	heat	and	power	 -0.093	 -0.009	

7	 Small	hydro	 -0.040	 -0.015	

8	 Waste	to	electricity	 -0.248	 -0.227	

9	 Nuclear	light	water	reactor	 -0.427	 -0.320	

10	 Wind	-	onshore	 -9.044	 -1.097	

11	 Solar	thermal	power	 -2.593	 -1.624	

12	 Wind	–	offshore	 -1.441	 -1.648

It	should	be	noted	that,	as	seen	from	Equation	(5),	 the	coefficients	for	
cumulative	capacity	(b)	and	R&D	(k)	are	constant	and	the	time	variation	in	the	
elasticities	 is	 due	 to	 changes	 in	 values	 of	 cumulative	 capacity	 Cap	 and	 R&D	
spending	RD	over	time.	Therefore,	the	changes	in	the	elasticities	over	time	should	



be	interpreted	with	some	care.	For	example,	most	of	the	technologies	analyzed	
here	exhibit	a	decline	in	substitution	elasticity	from	the	first	to	the	second	half	of	
the	periods.	This	can	be	due	to	relatively	higher	increase	in	installed	capacity	in	
relation	to	R&D	spending	which	has	been	negatively	affected	by	a	global	decline	
since	the	1980s	(see	Jamasb	and	Pollitt,	2005).

5. CONCLUSiONS

A	better	understanding	of	the	role	of	learning	in	technical	change	and	at	
different	stages	of	technological	progress	is	important	for	developing	better	theo-
ries	of	innovation	and	designing	more	effective	technology	policies.	This	paper	
presents	a	comparative	empirical	analysis	of	progress	and	learning	in	electricity	
generation	technologies	towards	this	aim	using	the	invention-innovation-diffusion	
paradigm	of	technical	change.	We	estimate	the	learning	by	doing	and	learning	by	
research	rates	for	a	range	of	generation	technologies	in	different	stages	of	prog-
ress	using	two-factor	models	of	technology	learning.	The	estimated	learning	rates	
of	the	technologies	broadly	reflect	their	expected	stage	of	development.

We	find	 that	emerging	 technologies	experience	a	period	during	which	
they	 respond	 slowly	 to	 R&D	 and	 capacity	 deployment.	 Evolving	 technologies	
exhibit	both	high	learning	by	doing	and	learning	by	research.	Reviving	technolo-
gies	show	considerable	potential	for	technical	improvement	through	learning	by	
research	although	they	do	not	face	significant	market	constraints.	Finally,	mature	
technologies	exhibit	similar	learning	characteristics	to	emerging	technologies.

The	relative	effectiveness	and	the	relationship	between	R&D	and	capac-
ity	expansion	is	an	 important	policy	related	matter	and,	at	 the	same	time,	 little	
understood	aspect	of	technical	change.	The	results	generally	point	to	the	relative	
importance	 of	 R&D	 in	 technological	 progress.	We	 find	 higher	 learning	 by	 re-
search	than	learning	by	doing	rates	(although	not	always	statistically	significant).	
Moreover,	we	did	not	find	any	stage	of	technological	development	where	learning	
by	doing	alone	was	the	dominant	driver	of	progress.

In	addition,	the	results	show	that	single-factor	learning	curves	overesti-
mate	the	effect	of	learning	by	doing	and	in	particular	for	emerging	and	new	tech-
nologies.	At	the	same	time,	we	generally	find	little	scope	for	potential	substitution	
between	learning	by	doing	and	learning	by	research	for	most	of	the	technologies.	
The	effects	of	R&D	and	capacity	deployment	on	technology	cost	improvement	
can	thus	be	regarded	as	largely	independent	from	each	other.

A	crucial	 policy	question	 is	how	 technologies	pass	 from	one	 stage	of	
development	 to	another.	This	 is	 in	particular	 important	 in	 the	passage	from	the	
“emerging”	 to	 “evolving”	 technology	 stage.	 There	 remains	 an	 ample	 need	 for	
more	extensive	and	accurate	data	on	different	technologies.	Better	data	will	en-
able	 more	 elaborate	 models	 of	 technology	 learning.	 This	 will	 in	 turn	 enhance	
the	 contribution	 of	 empirical	 studies	 towards	 improving	 innovation	 theory	 and	
technology	policy.
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