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Technical Change Theory and Learning Curves:  
Patterns of Progress in Electricity Generation Technologies

Tooraj Jamasb*

Better understanding of the role of learning in technical progress is 
important for the development of innovation theory and technology policy. This 
paper presents a comparative analysis of the effect of learning and technical 
change in electricity generation technologies. We use simultaneous two-factor 
learning and diffusion models to estimate the effect of learning by doing and 
learning by research on technical progress for a range of technologies in four 
stages of development. We find learning patters broadly in line with the perceived 
view of technical progress. The results generally show higher learning by research 
than learning by doing rates. Moreover, we do not find any development stage 
where learning by doing is stronger than learning by research. We show that 
simple learning by doing curves overstate the effect of learning in particular for 
newer technologies. Finally, we find little substitution potential between learning 
by doing and research for most technologies.

1. Introduction

The importance of technological progress as a major force behind factor 
productivity and economic growth is well established in the literature. The focus 
of early literature on science and technology was, however, on the effect and mea-
surement of technical change on output and growth. Technical change was treated 
as an exogenous phenomenon to the economy a view which posed clear limita-
tions for policy analysis. Since the 1960s, the focus of the literature has shifted to 

The Energy Journal, Vol. 28, No. 3. Copyright ©2007 by the IAEE. All rights reserved.

*	 Corresponding author. University of Cambridge, Faculty of Economics, Sidgwick Avenue,  
Austin Robinson Building, Cambridge CB3 9DE, UK. Phone: +44-(0)1223-335271, Fax: +44-
(0)1223-335299, Email: tooraj.jamasb@econ.cam.ac.uk.

The author wishes to extend special thanks to the SAPIENT project (DG Research) at the LEPII-EPE, 
Grenoble, France for generous help and providing access to data for this work. He would also like 
to thank Bruce Chen for research assistance and anonymous referees and acknowledge the financial 
support of the UK Research Councils’ (ESRC and EPSRC) Supergen and TSEC projects.

tia
Note
Article from 2007, Volume 28, Number 3



52 / The Energy Journal

the role of economic factors in technical change (Thirtle and Ruttan, 1987). The 
new paradigm views technical change as an endogenous factor and that it may 
be induced. This view is reflected in the increased interest in the use of learning 
curves in technology analysis. Recently, the notion of induced technical change 
has been adopted in analysis of energy and environmental technologies (Criqui et 
al., 2000; Grubb et al., 2002).

Innovation theory and cross-technology analysis using learning curves 
can shed light on the characteristics and the stages of technical change process. 
It is also of interest to improve the process of learning and identify those tech-
nologies that are likely to achieve most progress during a given period. Further, 
it is important to determine whether resources allocated to promotion of a given 
technology are better spent on research and development (R&D) or on capacity 
promotion policies.

In recent years, learning curves have been applied to analysis of induced 
technical change in energy technologies. The most commonly used forms are sin-
gle-factor learning curves that estimate the effect of cumulative capacity or pro-
duction on reducing the cost of technology (learning by doing). This framework 
overlooks the effect of R&D as an influential factor and policy tool (learning by 
research). As a result, not only the effect of R&D on technical progress cannot be 
determined but the estimates of learning by doing can also be affected. In addi-
tion, understanding the relative importance of learning by doing and learning by 
research on technical progress is important for improving innovation theory and 
energy technology policy.

This paper presents a comparative analysis of technical change in a range 
of electricity generation technologies at different stages of development using 
extended learning curves that reflect the main tenets of innovation theory. We use 
simultaneous two-factor learning curves and diffusion models to estimate the ef-
fect of learning by doing and learning by research on technical progress. We then 
examine the relative importance of R&D and capacity deployment for different 
technology categories. The results generally show higher learning by research 
than learning by doing rates. We do not find any technological development 
stage where learning by doing is the dominant driver of technical change. We 
also compare the learning by doing results from our model with those of single 
factor learning by doing models. Finally, we calculate the elasticity of substitu-
tion between R&D and capacity deployment for the technologies examined. The 
next section reviews the relevant literature and concepts of technical change and 
technology learning curves. Section 3 describes the methodology and data used 
for the analysis in the paper. Section 4 presents the results of the analysis. Section 
5 summarizes and concludes the paper.

2. Induced Technical Change and Learning Curves

Technical change is generally conceptualized as a gradual process that 
involves different stages of progress. The process and its stages have been de-



scribed in various ways. The most established of these is Schumpeter’s inven-
tion-innovation-diffusion paradigm (Schumpeter, 1934; 1942). Briefly, within 
this framework, invention is viewed as the generation of new knowledge and 
ideas. In the innovation stage, inventions are further developed and transformed 
into new products. Finally, diffusion refers to widespread adoption of the new 
products. The relationship between the stages of technical progress is no longer 
thought to be linear but a non-linear process with feedbacks between its com-
ponents (Stoneman, 1995). However, this process is not well understood and a 
coherent theory of technical change remains illusive. The concepts and charac-
teristics of the stages and process of technical change also apply to electricity 
generation technologies as these generally evolve through similar stages of prog-
ress (see Jensen, 2004).

R&D and capacity deployment are the main drivers of change in energy 
technologies (Skytte et al., 2004; Criqui et al., 2000). R&D has a role in all stages 
of technical progress although the nature of it can change. There is a broad corre-
spondence between the process of technical change and the main R&D activities 
– i.e. basic research, applied research, and development. Basic research is related 
to the invention and early stages of conception of technology. As the technology 
matures, applied research and development are associated with the innovation and 
diffusion stages of technical progress. In addition, the knowledge and learning 
by doing gained from manufacturing, scale of production, and utilization is an 
important source of technical progress.

The perceived view of the process of technical progress is that the rela-
tive importance of R&D and capacity deployment varies in different stages of 
development of a technology. At early stages of development, technical progress 
is mainly achieved through R&D and, in the absence of commercial viability, 
growth in capacity is limited. Gradually, diffusion of installed capacity begins to 
grow as cost reductions and technology support policies improve commercializa-
tion of a technology. While capacity deployment is constrained, R&D plays a 
leading role in achieving technical progress. As the technology matures and is 
adopted the effect of capacity deployment increases.

It is, therefore, important to study the relative importance of technology 
push and market pull and, in particular, their role in different stages of techno-
logical development (see Grübler et al., 1999). This will enhance our understand-
ing of the process and stages of technical changes and will help in the design of 
more effective policies and allocation of technology promotion resources between 
R&D and capacity deployment. However, it takes a long time before a technology 
evolves from invention to innovation stage and ultimately becomes fully commer-
cialized. The transition from invention and innovation to diffusion stage is crucial 
for technological progress. Theory informed policies and empirical evidence could 
improve the process and contribute to better allocation of technology promotion 
funds between R&D and capacity deployment across technologies.

Technical Change Theory and Learning Curves / 53



54 / The Energy Journal

2.1 R&D and Technology Policy

There is a range of electricity generation technologies at different stages 
of progress. Meanwhile, the notion of induced technical change implies that the 
process of innovation can be influenced. The logical extension of this is that poli-
cies can be devised to mitigate market failure for new technologies. A typology 
of such policies, consistent with the invention-innovation-diffusion paradigm, di-
vides these into supply push and demand pull measures.

R&D activities can be subject to three types of market failure namely 
indivisibility, uncertainty, and externalities (Ferguson and Ferguson, 1994). The 
aim of technology push measures is to overcome such barriers and to enhance the 
knowledge base and development of technologies. In turn, market or demand-pull 
measures promote technical change and learning by creating demand and devel-
oping markets for new technologies. Government R&D and promotion schemes 
are more important at the basic research and development stage. As the technol-
ogy matures policies supporting demand pull will gradually become effective in 
promoting technical progress.

2.2 Learning Curves

One approach to measure technical change that has recently received 
renewed attention is based on the notion of learning curves and the estimation 
of learning rates. Learning curves are used to estimate technical change as a re-
sult of innovative activities. The concept of learning effect as a distinct source of 
technical change was presented in Wright (1936) and Arrow (1962) and is often 
termed as “learning-by doing”. Technical change through learning effect is gener-
ally derived from learning curves where progress is typically measured in terms of 
reduction in the unit cost (or price) of a product as a function of experience gained 
from increase in cumulative capacity or output.

The concept of learning curves has been known for some time. However, 
early applications of these, between 1930s and 1960s, were related to product 
manufacturing (Wright 1936; Alchian, 1963; Arrow, 1962; Hirsh, 1952). In 1970s 
and 1980s, they were applied in business management, strategy, and organisation 
studies (BCG, 1970; Dutton and Thomas, 1984; Hall and Howell, 1985; Lieber-
man, 1987; Spence, 1986; Argote and Epple, 1990). Since 1990s, the pressing 
need for economic and policy analysis of energy technologies has been an im-
portant source of interest in application of learning curves to this area (Papineau, 
2006; McDonald and Schrattenholzer, 2001; Criqui et al., 2000; IEA, 2000).

In the most common form, learning curves define the cost or price of a 
technology as a power function of a learning source in cumulative form such as 
installed capacity, output, or labour. The learning curve is defined as in Equation 
(1). The learning effect of capacity increase on the cost of technology is expressed 
as “learning rate” LR measured in terms of the percentage cost reduction for each 
doubling of the cumulative capacity or production as in Equation (2).



 c = a * Cape	 (1)

LR = 1 – 2–e	 (2)

where:
c	 unit cost		
Cap	 cumulative capacity (or production, etc.)
ε	 learning elasticity
a	 constant	
LR	 learning rate

Some Issues with Single-factor Learning Curves

The usefulness of the simple specification of learning curves in Equation 
(1), originally developed in the context of manufacturing and mature industries, 
to technical change in evolving and emerging technologies is uncertain. The en-
dogenous view of and proactive approach to technical progress implies that both 
push and pull instruments can induce technical progress. Therefore, single-factor 
learning curves in energy technology analysis pose some known limitations. An 
important shortcoming of single-factor curves is that that they do not take the effect 
of R&D on cost reduction into account. From a policy point of view, single-factor 
learning curves only lead to capacity-oriented recommendations while ignoring the 
role of R&D in technical change. In addition, in the absence of R&D, single-factor 
curves are likely to produce inaccurate estimates of learning by doing rates.

Moreover, in the context of technology analysis, there can be a degree 
of endogeneity between cost reduction and capacity expansion - i.e. reduction in 
the cost of a technology is also likely to increase deployment of that technology. 
Therefore, within the framework of the invention-innovation-diffusion paradigm, 
single-factor curves amount to leaving out the main aspect of technology diffu-
sion. By using cumulative capacity only, single-factor learning by doing curves 
are just a partial model of the diffusion aspect of the technical change process. 
Consequently, single-factor curves are not appropriate for analysis of evolving 
and emerging technologies where the innovation stage of the technological pro-
cess is generally of most interest.

2.3 Two-factor Learning Curves

In some recent studies, the notion of learning effect has been extended 
to include “learning-by-researching” where R&D is assumed to enhance the tech-
nology knowledge base, which in turn leads to technical progress. The learning 
effect of R&D is accounted for in “two-factor learning curves” that incorporate 
cumulative R&D spending or number of patents as proxies for stock of knowledge 
(Kouvariatakis et al., 2000). As a policy analysis tool, two-factor learning curves 
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acknowledge a role for R&D and, thus, in effect, for technology policy in promot-
ing and achieving induced technical progress.

The concept of two-factor learning curves was first proposed in Kouvari-
atakis et al. (2000) where cumulative R&D and cumulative production are assumed 
to be the main drivers of technology cost improvement. Despite their relative advan-
tages, however, there are only few examples of application of two-factor technology 
learning curves. Klassen et al. (2005) and Cory et al. (1999) have applied two-factor 
learning curves in analysis of innovation in wind power. Also, Miketa and Schrat-
tenholzer (2004) and Barreto and Kypreos (2004) have used two-factor learning 
curves in large scale bottom-up optimization models of energy technologies.

3. Method and Data

3.1 Method

All electricity generation technologies produce a homogenous energy 
output. However, the underlying technical characteristics and knowledge base of 
these can vary greatly. There are also differences in contextual factors such as in 
market conditions, policy, and regulatory framework within which the technolo-
gies evolve. In addition, technologies can be at different stages of maturity and 
exhibit differences in their progress. Consequently, it is unlikely that there exists a 
single learning model and specification for all technologies that produces the best 
estimates of learning rates.

Estimates of learning rates are context-dependent and driven by model 
specification, variables used, and aggregation level. Indeed, there is considerable 
variation in the empirical estimates of learning rates for some energy technolo-
gies (McDonald and Schrattenholzer, 2001; Ibenholt, 2002). Moreover, estimated 
learning rates can vary depending on the time period for which they are mea-
sured (Claeson Colpier and Cornland, 2002). Therefore, there is not an absolute or 
unique learning rate for a given technology. Also, due to the underlying differenc-
es, estimations of learning rates for different technologies may lend themselves 
to different models and specifications. This is expected as the characteristics of 
different technologies can vary.

Models used for estimation of learning rates should take the effect of 
R&D on reducing the cost of technology into account. As suggested in Söderholm 
and Sundqvist (2003), inclusion of R&D spending in learning curve models adds 
a controllable policy variable and reduces the problem of omitted variables bias 
that would attribute some cost reduction achieved by R&D to cumulative capacity. 
In addition, models of learning need to take into account the endogeneity of the 
capacity and cost of technology – i.e. while higher installed capacity can result in 
unit cost reduction, the cost reduction can stimulate market diffusion and policies 
favoring capacity deployment.

Figure 1 summarizes the theoretical, practical, and policy conceptualisa-
tion of technical change and how these relate to different models of technology 



learning. As shown, single-factor learning curves (1-FLC) only reflect a particular 
aspect of technical change process – i.e. the effect of diffusion or market pull on 
technology cost. The two-factor learning curve model (2-FLC) incorporates the 
effects of both R&D (technology push) and capacity deployment (market pull) on 
technical change. However, the diffusion and installed in installed capacity of a 
technology can in turn increase as a result of reduction in the cost of that technol-
ogy and with time. The 2-FLC model can be extended to also include these effects 
on the uptake of technology. The extended model (2-FLDC) therefore reflects 
both the causal relationship between cost and diffusion and endogeneity of in-
novative activities and diffusion as policy instruments. Therefore, the 2-FLDC 
model depicted in Figure 1 captures the main features of the Schumpeterian para-
digm of technical change as depicted in dashed arrows.

A system of simultaneous equations incorporating R&D and endogene-
ity of capacity on cost, transforms single-factor learning by doing curves from a 
partial model to a theory-informed learning-innovation-diffusion model that re-
flects the main elements and feedback in the invention, innovation, and diffusion 
paradigm. To our knowledge, the only example of such approach is reported in 
Söderholm and Klassen (2007) which uses simultaneous learning-diffusion equa-
tions to estimate the effect of promotion policies for wind power in the UK, Spain, 
Denmark, and Germany. The study finds evidence of diffusion i.e. significant pos-
itive effect from cost reduction on cumulative capacity as well as effect of policy 
type and design on cost development of wind power.

Figure 1. Technical Change Concepts and Models of Learning Curves

Based on the conceptual model of technical change and innovation out-
lined in Figure 1, we estimate the two-factor simultaneous learning-diffusion 
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model (Model-I) as specified in Equations (3) and (4). We use the three-stage 
least squares (3SLS) method to estimate the model for each technology sepa-
rately. Equation (3) is a two-factor learning curve estimating the learning effect of 
cumulative capacity and R&D on the unit capacity – capacity – i.e. the diffusion 
or uptake of a technology. Equation (4) reflects the effect of cost reduction and 
time on cumulative capacity i.e. the diffusion of a technology.

The unit cost of technology c and the cumulative installed capacity Cap 
are treated as endogenous variables – i.e. they are determined within the model. 
Other variables such as cumulative R&D spending RD, time variable T (when 
significant), and cumulative number of patents Pat for each technology are used as 
exogenous variables. The exogenous variables (e.g. number of technology patent) 
do not need to be part of the structural variables and are used in the first stage of 
the SLS estimation to regress the endogenous variables on exogenous variables of 
the system. In addition, the cumulative number of patents Pat is, where appropri-
ate, used as instrumental variable.

Two-factor learning equation:

Logc
nt
 = a

n
 + b

n
 * LogRD

nt
 + k

t
 * LogCap

nt
	 (3)

Capacity diffusion equation:

LogCap
nt
 = µ

n
 + w

n
 * Logc

nt
 + χ

t
 * LogT

nt
	 (4)

Endogenous variables: Logc
nt
, LogCap

nt

Exogenous variables: LogRD
nt
, LogPat

nt
, LogT

nt

where:
c	 unit cost of generation capacity (€1999/KW)
RD	 cumulative private and public R&D spending (mill. €1999)
Cap	 cumulative installed generation capacity (MW)
T	 time variable (years)
Pat	 cumulative number of technology patents
n	 technology
t	 learning period (1, …, t, …w)

A general issue in estimation of learning models is to separate the ef-
fect of learning on technical change from that of exogenous progress that occurs 
over time. Therefore, a time variable T is included in the Equation (4) in order to 
separate the effect of time on technical change. Although it s generally preferable 
to include a time variable in the technology learning models, in cases where inclu-
sion of this results in wrong sign or insignificant coefficient, we drop this variable 
from the estimation. The main reason for this is that the sign and significance of 
the learning by doing and learning by research coefficients are important for the 



reliability of the learning rates and elasticity of substitution that are calculated 
from these. It is possible that some technologies are less influenced by exogenous 
technical change or that in the future longer time series may shed more light on 
the role of time and exogenous effects.

The nature and actual progress path of some technologies can differ 
from the above general model. The first preference is to apply the more com-
plete Model-I to all technologies. However, for technologies that Model-I does 
not find correct sign or statistically significant coefficients we use a simpler 
single-equation two-factor specification (Model-II) as in Equation (2) instead. 
Model-II uses two-stage least squares (2SLS) estimation method and, where 
possible, with cumulative number of patents Pat or time variable T as exogenous 
variables. Some studies of technology learning rates have used time lags or 
some measures of knowledge depreciation. Such extensions of learning models 
are conceptually correct and useful but care should also be taken in the under-
lying assumptions and application to individual technologies. For the purpose 
of this study which involves a range of different technologies this could not be 
handled properly.

We also calculate the elasticity of substitution between cumulative R&D 
spending and capacity deployment for the technologies studied here. Elasticity of 
substitution is a unit-neutral measure of the ease with which input factors i.e. in 
this case installed capacity and R&D can substitute each other. In a Cob-Douglas 
specification, elasticity of substitution can then be calculated from Equation (5).

	 b
n
	 Cap

nts =  ——  *  ——–	 (5)
	 k

n
	 RD

nt

A substitution elasticity equal to unity represents the case of constant 
returns to scale. The extent to which the measured elasticity deviates from unity 
indicates the degree of difficulty with which the main two learning factors and 
sources of technical change can substitute each other.

3.2 Data

Any attempt to estimate technology learning rates is faced with the choice 
of proper level of data aggregation. The appropriate level of analysis is dependent 
on the purpose of the study. For example, country or regional-level studies allow 
for examination of the effect of policies and local circumstances on technology 
cost. As this paper aims to examine high-level patterns of technical change, we 
use aggregate global data in order to obtain a broad view of technological prog-
ress. An advantage of using global level data for this analysis is that they capture 
the effect of unobservable factors such as spillover effects of technical progress 
which occur at national and regional levels. A potential drawback of using global 
level data is that the accuracy of some of data may decrease. For example, best 
available technology or cost improvements can reach developing countries with a 
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delay. In addition, some information may be lost in conversion of costs in different 
currencies into a single monetary unit.

Table 1 summarises the technologies and time periods examined in this 
study. The data for the technologies used were compiled from the information in 
the database of the POLES model.� The unit cost and R&D spending figures are 
expressed in constant 1999 US dollars. The R&D data comprise the estimated 
government and private spending on research and development. The patent data 
used is the cumulative number of patents for the technology being examined. 
Margolis and Kammen (1999) have shown that there is a positive and strong cor-
relation between the number of technology patents and R&D spending. The data 
is based on the count of the electricity technology patents submitted by OECD 
countries to the European Patent Office. A consistent procedure has been used in 
order to transform the primary data in the patent office classification coding sys-
tem into specific electricity generation technologies categories for the model.

The data enables us to estimate the learning effect for a varied set of 
electricity generation technologies. The choice of technologies studied here has 
been driven by availability of suitable data i.e. the key variables that allow deriva-
tion of learning rates using simultaneous two-factor learning and diffusion mod-
els. However, this preferred model specification has had the effect of limiting the 
number of years for which some of these technologies could be analyzed. For the 
combined cycle gas turbine technology, the post-1990 period was separated due 

�. The TECHPOL database has been kindly provided by the LEPII-EPE, Grenoble, France. This 
database has been assembled in the framework of the SAPIENT project (DG Research) to inform the 
world energy simulation model POLES.

Table 1. Technologies and Data Summary (Mean Values)
				   Cumulative	 Cumula-	 Cumula- 
			   Unit cost	 installed	 tive R&D	 tive 
			   of capacity	 capacity	 (mill.	 patents 
	 Technology	 Year	 ($1999/kW)	 (MW)	 $99)	 (number)

1	 Pulverized fuel supercritical coal	 1990–1998	 1,493	 19,034	 7,461	 495	

2	 Coal conventional technology	 1980-1998	 1,308	 650,512	 35,452	 -	

3	 Lignite conventional technology	 1980-2001	 1,275	 105,120	 7,877	 -	

4	 Combined cycle gas turbines	 1980-1989	 573	 1,524	 15,438	 3,324		

	 	 1990-1998	 509	 62,301	 25,448	 7,634	

5	 Large hydro	 1980-2001	 3,426	 452,558	 17,881	 -	

6	 Combined heat and power	 1980-1998	 920	 31,084	 14,913	 47	

7	 Small hydro	 1988-2001	 2,431	 23,708	 1,171	 -	

8	 Waste to electricity	 1990-1998	 3,528	 11,338	 18,928	 5,407	

9	 Nuclear light water reactor	 1989-2001	 3,015	 334,266	 100,729	 -	

10	 Wind – onshore	 1980-1998	 2,094	 2,913	 7,099	 1,634	

11	 Solar thermal power	 1985-2001	 4,990	 256	 4,498	 -	

12	 Wind – offshore	 1994-2001	 2,066	 82	 261	 -



to an apparent structural break in the data. This coincides (though it may not fully 
explain the break) with the start of liberalization of the sector in the UK and later 
in other countries where gas was the technology of choice in deregulated markets 
and resulted in significant expansion of the installed capacity.

4. Results

As discussed previously, moving from simple single-factor learning curves 
to two-factor learning-diffusion models is conceptually preferable. However, in 
some cases, this may cause practical estimation issues. While the former models 
always return some significant result, the latter models may not necessarily do so. 
Technology learning rates often rely on econometric estimations of relatively short 
time-series data that also exhibit strong trends. The results of regression analysis 
may, therefore, be spurious and the R-squares can overestimate the relationship be-
tween the dependent and independent variables. Moreover, some estimated coef-
ficients can become statistically insignificant or may even show the wrong sign.�

There are significant differences in the underlying technical and knowl-
edge properties of the electricity generation technologies. This can result in dif-
ferent models being suitable for estimation of the learning rates for these. We use 
two model specifications to the set of technologies in the following order of pref-
erence. We first estimate simultaneous two-factor learning-diffusion models with 
exogenous variables (Model-I). Where this approach does not yield significant 
and reasonable results, we use the simpler single-equation two-factor learning 
curves (Model-II). 

The results are organised by placing the technologies in four categories 
(mature, reviving, evolving, and emerging) that are broadly in line with their per-
ceived level of development. In addition, we calculate elasticity of substitution 
between learning by doing and learning by researching in reducing the cost of 
different technologies.

4.1 Mature Technologies

The first category of technologies consists of the more mature and estab-
lished generation sources. The technologies in this category have been developed 
and utilized over a long period of time and have had a major share of the expansion 
of electricity sectors worldwide (Table 2). Column 1 of Table 2 indicates whether 
a full two-factor learning-diffusion or a two-factor learning model produced the 
best results. Columns 2 and 3 show the estimated elasticities of cumulative capac-
ity (and significance level) and the corresponding learning by doing rate for the 

�. Cory et al. (1999) estimate two-factor learning curves for wind turbines in the United States 
between 1981 and 1995 and first obtain positive sign for the coefficient of the number of turbines. 
They attribute this to large changes in market growth in part of the period of study and find plausible 
estimates after splitting the data into two separate periods.
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“learning equation” respectively. Similarly, columns 4 and 5 show the estimated 
learning by research elasticities and rates respectively. Columns 6 and 7 show the 
coefficients of diffusion and time for the “diffusion equation” respectively – i.e. 
the effect of reduction in the cost of technology and time on cumulative capacity. 
Column 8 shows the instrumental variables used in the learning-diffusion models.

The estimated elasticities have all the expected signs – i.e. an increase in 
cumulative capacity or R&D spend reduces the cost of technologies. Likewise, a re-
duction in the cost of the ttechnologies and an increase in time results in higher up-
take and cumulative capacity. The results show that the mature technologies exhibit 
fairly comparable learning characteristics – i.e. they show low learning by research 
and learning by doing rates. These technologies, due to their mainstream position 
and widespread use, have faced little market constraints in terms of commercial 
and expansion opportunities than other technologies. Mature technologies are also 
comparatively less capital intensive than the newer technologies owing to a longer 
process of technological improvement and relatively larger size of the units.

A notable exception is the conventional coal technology, which shows 
a somewhat higher learning by doing rate. While the learning coefficients are 
statistically significant, the reasons for this are not immediately clear. However, 
in practice, it should be noted that, given the high levels of existing capacity for 
established technologies, a doubling of capacity and further cost improvements 
can only take place over a long period of time.

4.2 Reviving Technologies

The next category of technologies comprises a set of “reviving” genera-
tion sources. These technologies have been utilised for a long time and as such 
are not radical innovations (Table 3). The results show that there are some com-
mon learning characteristics among the technologies in this category in the form 
of low levels of learning by doing while showing a fairly high degree of learning 
by research.

The low learning by doing rates for these technologies suggest limited 
scope for future cost reductions through capacity deployment. Moreover, the exist-
ing high levels of installed capacity for these technologies suggest that they have 
limited scope for cost reductions – i.e. in terms of learning rates it takes a longer 
time for their installed capacity to double. At the same time, the learning by research 
rates show considerable potential for further cost reductions. Although, the extent to 
which the high learning by research rates can sustain in the future is uncertain.

During the periods studied here, the reviving technologies have achieved 
technical progress and due to their environmental advantages, have benefited from 
favorable policies and market opportunities. As a result, market uptake of these 
technologies has been unconstrained and these have realized much of their learn-
ing by doing potential. Small hydropower benefited from increased research in 
renewable energy sources. Availability of smaller and more efficient combined 
heat and power units have expanded the market for this technology by facilitat-
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ing industrial and commercial applications of it. Combined cycle gas turbines 
achieved technical progress mainly by increasing the efficiency and reducing the 
cost effective size of the turbines.

Another shared characteristic of the reviving technologies is that R&D 
and technical change has lowered the cost efficient size of generation plants. 
Moreover, similar to mature technologies, reviving technologies are not com-
paratively capital intensive. Therefore, the required capital investments in these 
technologies have decreased which, in liberalised electricity markets, amounts to 
a comparative advantage.

4.3 Evolving Technologies

The third category of technologies comprises “evolving” generation re-
sources. The technologies in this category consist of nuclear power (light water 
reactor), waste to electricity, and wind power. These technologies have existed 
either for a shorter time and/or have experienced more constraints, due to envi-
ronmental concerns or planning issues, in their capacity expansion than reviving 
technologies during the period under consideration.

The estimated learning rates for these technologies show high levels of 
learning by doing as well as learning by research (Table 4). Nuclear power has not 
been a priority area in energy policy and environmental concerns with accidents 
and radioactive waste have significantly reduced its market opportunities. Wind 
power has enjoyed a favorable policy environment in many countries and, as a 
result of capacity deployment and promotion schemes, has shown considerable 
growth in recent years. However, due to reliance on public subsidies and lack of 
full cost competitiveness in relation to established conventional technologies, wind 
technology faces market constraints in reaching a significant share of generation 
resource mix. Waste to electricity is in a middle position. Environmental concerns 
with emissions and siting constraints have meant that this technology has not expe-
rienced an expansive market growth. Moreover, liberalisation of the sector in many 
countries has further limited the market potential for the evolving technologies. 
Without government support these technologies will not be the obvious choices for 
private investors operating in competitive markets.

As noted, the evolving technologies have faced some market constraints 
that have limited their growth potential. It is, therefore, plausible that these tech-
nologies still have significant potential for further cost improvement through 
learning by doing, for example, throught increase in manufacturing scale and de-
sign standardisation. Their moderate or low levels of installed capacity also sug-
gest that these technologies still possess scope for significant capacity increases 
and cost reductions through learning by doing.

Moreover, the estimated learning by research rates show considerable 
potential for cost reduction. Nuclear and wind power are capital intensive technol-
ogies and the initial capital investments required in these technologies are com-
paratively higher than those of fossil fuel based technologies. As a result, much of 
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future cost improvements in these technologies can also come from learning by 
research resulting in lower capital investment requirements.

4.4 Emerging Technologies

The final category of technologies examined is “emerging” generation 
sources and includes thermal solar power and offshore wind power. The emerging 
technologies have existed for a relatively shorter time and show a lesser degree 
of technical progress during the period under consideration. The estimated learn-
ing rates for both technologies indicate low learning by doing and learning by 
research rates (Table 5).

Both of these technologies have environmental advantages and they have 
benefited from promotion policies for renewable energy technologies. However, 
limited progress in technical change and cost relative to other technologies has 
constrained their market opportunity and diffusion. This is also reflected in our 
results as, due to a lack of capacity responsiveness to cost improvement, learn-
ing-diffusion models did not return acceptable results. As a result of market con-
straints and lack of cost competitiveness, diffusion of emerging technologies has 
been slow and they are yet to gain a noticeable share of energy mix.

Similar to evolving technologies, electricity sector liberalisation has in-
creased the dependence of the emerging technologies on public R&D and pro-
motion schemes. In the light of the existing low levels of installed capacity and 
presence of market constraints, the emerging technologies are likely to have sig-
nificant potential for cost improvement through learning by doing and learning 
by research. Another similarity to evolving technologies is that emerging tech-
nologies are capital intensive and as a result, the main potential for further cost 
improvements in these technologies, from learning by research and learning by 
doing, need to come in the form of reductions in investment requirements.

Single-factor learning curves do not reflect the effect of R&D on techni-
cal change and overstate the effect of learning by doing. Table 6 compares the 
learning by doing rates from two-factor learning curves with those of simple sin-
gle-factor learning curves as specified in Equations (1)-(2). As shown in the table, 
the learning by doing rates from single-factor learning curves are higher than 
those estimated by two-factor learning-diffusion curves. Moreover, the overstate-
ment is larger for evolving and emerging technologies, which are of particular 
interest to the current energy technology policy debate. An implication of devising 
policies based on overestimated learning by doing rates is that they can shift the 
scarce resources earmarked for innovation resources from more productive R&D 
activities to less productive and more costly capacity deployment policies.

The main results and characteristics for the four technology categories are 
summarized in Table 7. The results indicate that emerging technologies can initially 
experience a relatively long period during which they respond slowly to R&D ef-
forts and capacity deployment. In the next development stage, as evolving technolo-
gies, they exhibit both high learning by doing and learning by research rates.



Table 6. Learning by Doing Rates Using Single-factor Curves
		  Learning	 Learning 
		  by Doing Rate	 by Doing Rate 
	 Technology	 Two-Factor Curves	 Single-Factor Curves

1	 Pulverized fuel supercritical coal	 3.75%	 4.8%	
2	 Coal conventional technology	 13.39%	 15.1%	
3	 Lignite conventional technology	 5.67%	 7.8%	
4	 Combined cycle gas turbines (1980-89)	 2.20%	 2.8%	
	 Combined cycle gas turbines (1990-98)	 0.65%	 3.3%	
5	 Large hydro	 1.96%	 2.9%	
6	 Combined heat and power	 0.23%	 2.1%	
7	 Small hydro	 0.48%	 2.8%	
8	 Waste to electricity	 41.5%	 57.9%	
9	 Nuclear light water reactor	 37.6%	 53.2%	
10	 Wind - onshore	 13.1%	 15.7%	
11	 Solar thermal power	 2.2%	 22.5%	
12	 Wind – offshore	 1.0%	 8.3%

Table 7. 	 Development Stage, Learning Rate, Capital Intensity, and  
Market Opportunity for the Technology Categories

	 Learning 	 Learning 	 Capital	 Market 
	 by Doing	 by Research	I ntensity 	 Opportunity

Mature technologies	 Low	 Low	 Low	 High	
Reviving technologies	 Low	 High	 Low	 High	
Evolving technologies	 High	 High	 High	 Low	
Emerging technologies	 Low	 Low	 High	 Low

Moreover, it is noteworthy that reviving technologies show considerable 
potential for technical improvement through learning by research although they 
do not face significant market constraints. At the final development stage, mature 
technologies exhibit rather similar learning characteristics to emerging technolo-
gies in the form of low learning by doing and by research rates. In addition, the 
reviving and mature technologies are relatively less capital intensive than evolv-
ing and emerging technologies. As technical progress is mainly embodied in the 
stock of capital, emerging and evolving technologies have a significant potential 
for achieving further cost reductions that need to be realized. Furthermore, mature 
and reviving technologies have accounted for the bulk of generation capacity offer-
ing them large market shares and thus potential for learning by doing effect. On the 
other hand, evolving and emerging technologies still face market constraints and 
need public support that limits their potential benefits from learning by doing.

As expected, some of the results show that unit cost reductions tend to in-
crease market diffusion and adoption of technologies. However, we only find high 
rates of learning by doing in the evolving technologies. With a view to a stylized 
technical progress and diffusion path, high capital intensity and limited market op-
portunities can slow the pace of progress in emerging and evolving technologies.
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4.5 Elasticity of Substitution Between R&D and Capacity

An interesting technology policy question following from the discussion 
of learning by doing versus learning by research is the extent to which these may 
substitute each other and whether this may be dependent on the stage of the devel-
opment of technologies. This knowledge would be particularly useful in alloca-
tion of public funds for technology promotion between technology push (learning 
by research) and market pull and deployment (learning by doing) measures. Table 
8 shows the average elasticity of substitution for the technologies during the first 
and second half of the periods of the study.

As shown in the table, while some technologies have moved closer to 
unity (full substitution) others have moved further away from this. It is difficult to 
determine the cause of this from the analysis here. However, it is important to note 
that the diverse nature of the technologies may partly explain this. For most of the 
technologies the substitution elasticities deviate from unity thus indicating only 
weak substitution possibility between learning by doing and learning by research. 
Notable exceptions are, however, onshore wind, offshore wind, and solar thermal 
power technologies where we find some evidence of relative ease of substitution 
between R&D and deployment as the main innovation input factors. In addition, 
conventional coal and CCGT (1990-98) technologies show some indication of 
substitution possibility.

Table 8. Elasticity of Substitution – R&D and Capacity
	 Technology	 First half-period	 Second half-period

1	 Pulverized fuel supercritical coal	 -0.308	 -0.127	

2	 Coal conventional technology	 -0.361	 -0.481	

3	 Lignite conventional technology	 -0.180	 -0.205	

4	 Combined cycle gas turbines (1980-89)	 -121.68	 -14.78		

	 Combined cycle gas turbines (1990-98)	 -1.142	 -0.644	

5	 Large hydro	 -0.015	 -0.007	

6	 Combined heat and power	 -0.093	 -0.009	

7	 Small hydro	 -0.040	 -0.015	

8	 Waste to electricity	 -0.248	 -0.227	

9	 Nuclear light water reactor	 -0.427	 -0.320	

10	 Wind - onshore	 -9.044	 -1.097	

11	 Solar thermal power	 -2.593	 -1.624	

12	 Wind – offshore	 -1.441	 -1.648

It should be noted that, as seen from Equation (5), the coefficients for 
cumulative capacity (β) and R&D (κ) are constant and the time variation in the 
elasticities is due to changes in values of cumulative capacity Cap and R&D 
spending RD over time. Therefore, the changes in the elasticities over time should 



be interpreted with some care. For example, most of the technologies analyzed 
here exhibit a decline in substitution elasticity from the first to the second half of 
the periods. This can be due to relatively higher increase in installed capacity in 
relation to R&D spending which has been negatively affected by a global decline 
since the 1980s (see Jamasb and Pollitt, 2005).

5. Conclusions

A better understanding of the role of learning in technical change and at 
different stages of technological progress is important for developing better theo-
ries of innovation and designing more effective technology policies. This paper 
presents a comparative empirical analysis of progress and learning in electricity 
generation technologies towards this aim using the invention-innovation-diffusion 
paradigm of technical change. We estimate the learning by doing and learning by 
research rates for a range of generation technologies in different stages of prog-
ress using two-factor models of technology learning. The estimated learning rates 
of the technologies broadly reflect their expected stage of development.

We find that emerging technologies experience a period during which 
they respond slowly to R&D and capacity deployment. Evolving technologies 
exhibit both high learning by doing and learning by research. Reviving technolo-
gies show considerable potential for technical improvement through learning by 
research although they do not face significant market constraints. Finally, mature 
technologies exhibit similar learning characteristics to emerging technologies.

The relative effectiveness and the relationship between R&D and capac-
ity expansion is an important policy related matter and, at the same time, little 
understood aspect of technical change. The results generally point to the relative 
importance of R&D in technological progress. We find higher learning by re-
search than learning by doing rates (although not always statistically significant). 
Moreover, we did not find any stage of technological development where learning 
by doing alone was the dominant driver of progress.

In addition, the results show that single-factor learning curves overesti-
mate the effect of learning by doing and in particular for emerging and new tech-
nologies. At the same time, we generally find little scope for potential substitution 
between learning by doing and learning by research for most of the technologies. 
The effects of R&D and capacity deployment on technology cost improvement 
can thus be regarded as largely independent from each other.

A crucial policy question is how technologies pass from one stage of 
development to another. This is in particular important in the passage from the 
“emerging” to “evolving” technology stage. There remains an ample need for 
more extensive and accurate data on different technologies. Better data will en-
able more elaborate models of technology learning. This will in turn enhance 
the contribution of empirical studies towards improving innovation theory and 
technology policy.
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