A brief introduction of adaptation in China

Ma Xin

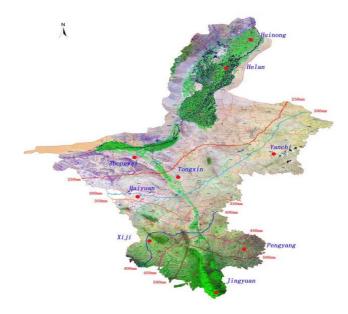
Agro-environment and Sustainable development Institute

Chinese Academy of Agricultural Sciences

contents

- Agricultural adaptation in China
- Two important tasks of agriculture development in China
- ➢ Five Demo projects in China
- A case study in Ningxia
- ➢ background
- Adaptation objectives
- Methods and criteria
- Identified adaptation options
- lessons learned

Agricultural adaptation in China

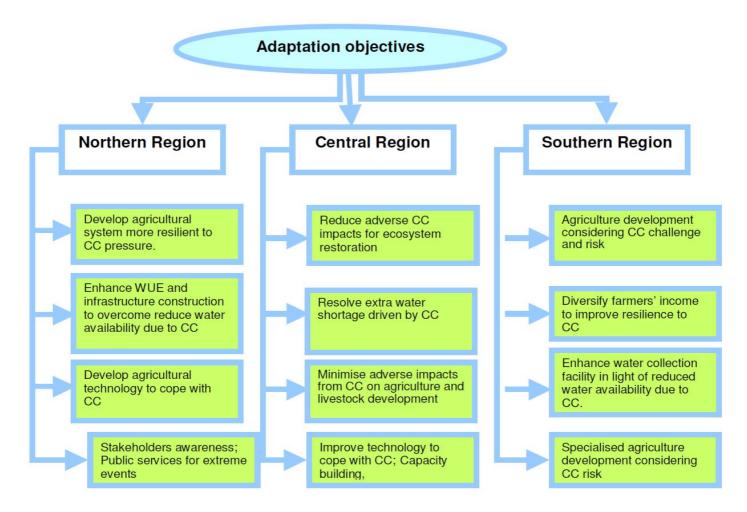

Two important tasks of agriculture development in China

1)To increase a thousand billion kilograms of grain in the future ten years to fulfill the needs of population growth

2) To realize the commitment that energy consumption of capita GDP decrease 40% to 45%, announced by Chinese government

适应示范Adaptation Demonstration in China

Demo. areas	Heilong jiang	Heihe basin, GS	Tailanhe basin, XJ	Naqu Tibet	Qinghai- Tibet Railway	
CC Risk	Cooling dec. getting dryer	Water consuming increase for oasis	More water coming now and will decrease	Grassland dryer, lake level rise	permafrost layer thawing by warming	
Adap. Target	Go benef, avoid disaster	Water saving & cultivat	Saving water and ecolog. protect	Protect grassland ecology	to minimise the amount of heat	
Poten. Adapt.	Structure adjusting	Low consuming technology	Integrated water management	pasture animals with water use	insulation and cooling systems	
Adp. Asse.		300 million m3		4 times of passture	1 °C	
Demon.	700 hm2 x 4	20 hm2 land	10 reserv. 60 hm2 land	sprinkled Irrigat.12hm2	Project design in railway	

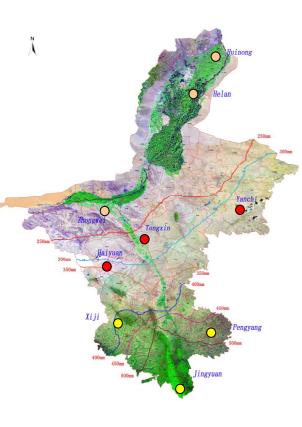

Background

- Ningxia Autonomous Region: located in northwest China
- Arid to semi-arid, annual precipitation is from 180-620mm
- □ Range of different farming systems
 - Northern irrigation area
 - Middle arid area
 - Southern rainfed mountainous area

Xiii

□ High levels of rural poverty

Sub-regional adaptation objectives


Method

Participatory Rural Appraisal (PRA) method used

Five parts are included in the questionnaire:

- Basic information about households
- General information on agricultural activities
- Climate variability and its impact on livelihoods
- Adaptation measures and their costs
- Farmers' views on opportunities for government support

Village sampling strategy

Village sampling strategy based on agricultural system and poverty levels Three villages in each area At least 30 households in each village 289 households were interviewed in 9 villages chosen, 95 in northern irrigation area, 101 in middle arid area, 93 in southern rainfed mountainous area.

identified adaptation options

Strategic and Planning

Regional development plans and strategies (i.e. the eleventh-five year plan)

Department plans and options for addressing disasters Improving enforcement and regulation of existing guidelines (e.g. *Grain to Green* policy)

An agricultural adaptation in Ningxia identified adaptation options

Structural

new agricultural technology and agricultural extension services

Practical agriculture technique training

Technology dissemination for dry land farming system

Crop management practices

Reducing spring wheat areas

Increasing potato and mulching maize areas

Slope field shift to terrace

Water saving techniques

Drought resistant varieties

Deep ploughing

Poverty alleviation programmes

Subsidize farmers who return crop land to grass or forestry

Export of labour

One million farmers training: government invest 10 million Yuan to help farmers get qualified certification for off-farm job;

.

identified adaptation options

Non-Structural

Raising awareness about climate change issues

Strengthening appropriate programmes for vulnerability reduction (e.g. livelihood diversification)

Research, monitoring and data collection (e.g. improve knowledge of existing risk and vulnerability, economic costs of

climate hazards)

Education, training, and dissemination about climate change risks (experts and communities)

Introducing / strengthening early warning systems

Weather forecasting

Build capacity to respond to climate hazards at individual and institutional level

Multi-criteria analysis to priorities specific activities

Criteria	Rating		
Win-win options: Does the option address current climate variability <i>and</i> future climate change?	1 = uncertainty2= based only current3= both current and short term (3-5 years)4 = medium tolong-term (more than 5 years)		
Existing risk management: Is the option consistent with existing risk management activities?	1= no2= consistent in short term3= consistent in long term (average change)4= both short and long term		
Cost effectiveness: Can costs and benefits of the option be easily determined?	1= very difficult 3= easy	2= difficult 4= very easy	
Adaptive flexibility: Does the option focus on narrow range of future scenarios, or allow flexibility of response?	1= no, irreversible 3= flexible easy	2= limit flexible 4= very flexible and	
Unintended impacts: Potential negative spin-off impacts beyond targeted activity?	1= adverse impact 3= no impacts	2= uncertain 4= beneficial impact	
Practical considerations: Is the option practical and feasible for the implementer?	1= unfeasible, impossible problematic 3= relatively simple	2= more 4= more easily	
Knowledge level: How much certainty is there in predicting a particular change in hazard and its impact?	1= uncertainty (less 10%) (10%~20%) 3= medium certainty (about 50%) (more than 80%)	2= low certainty 4= high certainty	
Policy coherence: Does the option reflect local and national disaster risk reduction / adaptation plans or studies?	1= only the long-term or only the 2= long and medium term needs 3= short term needs		
Total score			

Adaptation measures - Drought

Plastic film

Plastic film+ Gravel

Adaptation measures - Drought

Rain water harvest

Water saving measures

Hole irrigation

furrow irrigation

Anti-leakage ditch

Conservation tillage

Adaptation measures

Adaptation meas

- Government and scientific community
 - Water diversion
 - Drought resistance variety
 - Weather modification

Cost-benefit of some adaptation measures

Practice	Cost ¥ /ha	Benefit
Harrowing	450~750	~40% increase in yield
Film mulching	390~750	20~40% increase in yield
Gravel covering	4810	8430 ¥ /ha
Water cellar	500-1000 ¥/cellar	680-800 ¥/year saved
Terrace	3000	30-50% increase in yield

lessons learned

➢A good 'entry point' for discussions on adaptation in the longterm is through reducing vulnerability to existing climate hazards.

Climate risks and adaptation priorities vary across (sub)regions and sectors.

>There is a need for coordinated management across sectors.

>Much actors constraining farmers' adaptation.

> Farmers have very higher expectation for adaptation.

thanks

Email: <u>maxinwork@gmail.com</u> <u>max@ami.ac.cn</u>