Your location: Home

Compendium on methods and tools to evaluate impacts of, and vulnerability and adaptation to, climate change
 
ORCHIDEE Dynamic Global Vegetation Model
Description

The ORCHIDEE dynamic global vegetation model represents the land surface features of the IPSL coupled atmosphere-ocean-vegetation model. ORCHIDEE has been developed using first order ecophysiological principles to represent both natural ecosystem and managed land carbon, water, and energy dynamics across multiple spatial (site to globe) and temporal (sub-daily to centennial) scales.

Appropriate Use To quantify component and net fluxes of the carbon cycle (e.g., photosynthesis, respiration, net primary production, net ecosystem production), water cycle (e.g., transpiration, evaporation, soil moisture, runoff), and energy cycle (e.g., latent and sensible heat fluxes, albedo). Carbon stocks and vegetation distribution, and features of managed ecosystems (forest management, agriculture, and grazing) and disturbance (fire regimes and fire emissions) are also quantified.
Scope Local scale (km) to global scale (0.5 degree) depending on the spatial resolution of input data.
Key Output Carbon, water and energy fluxes with sub-daily (30 minute) to annual frequency are main outputs from the model. In addition, vegetation distribution (using the plant functional type approach) and carbon stocks (partitioned into above and belowground pools, and foliage, sapwood, and heartwood) are also simulated.
Key Input To run ORCHIDEE, sub-daily to monthly climate inputs for short and longwave radiation, precipitation (including snow), air temperature, humidity, and surface air pressure are required, as well as atmospheric CO2 concentration and soil texture and depth.
Ease of Use Expert user.
Training Required Expertise in numerical ecosystem modelling and vegetation dynamics.
Training Available Training is provided at the University level for Masters, PhD students and Post-Doctoral researchers.
Computer Requirements Linux cluster.
Documentation

Bellassen, V., N. Viovy, S. Luyssaert, G. Le Maire, M. J. Schelhaas, and P. Ciais. 2011. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Global Change Biology:doi: 10.1111/j.1365-2486.2011.02476.x.

Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, V. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. de Noblet, A. D. Friend, P. Friedlingstein, T. Grunwald, B. Heinesh, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala, and R. Valentini. 2003. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:doi:10.1038/nature03972.

Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogeé, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19:GB1015, doi:1010.1029/2003GB002199.

Piao, S., P. Ciais, P. Friedlingstein, N. de Noblet-Ducoudre, P. Cadule, N. Viovy, and T. Wang. 2009. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles 23:doi:10.1029/2008GB003339.

Applications ORCHIDEE is frequently used to quantifying the dynamics of the carbon and water cycle to climate variability and change at site, continental and global scales. Within the biogeochemical framework of ORCHIDEE, fire, forest management and agriculture modules (including pasture and grazing) have been developed to evaluate the impact of human activities on biogeochemical cycling.
Contacts for Framework, Documentation, Technical Assistance

Dr. Philippe peylin, Laboratoire des Sciences du Climat et l'Environnement (LSCE)

philippe.peylin@lsce.ipsl.fr

Cost Not identified
References

Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, V. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. de Noblet, A. D. Friend, P. Friedlingstein, T. Grunwald, B. Heinesh, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala, and R. Valentini. 2003. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:doi:10.1038/nature03972.

Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogeé, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19:GB1015, doi:1010.1029/2003GB002199.

Piao, S., P. Ciais, P. Friedlingstein, N. de Noblet-Ducoudre, P. Cadule, N. Viovy, and T. Wang. 2009. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles 23:doi:10.1029/2008GB003339.